A novel red-emitting binuclear platinum complex (dfppy)zPtz(C^OXT)z was synthesized and characterized, in which dfppy represents 2-(4',6'-difluorophenyl)pyridinato unit and CsOXT is abbreviated for 5-(4-octyl...A novel red-emitting binuclear platinum complex (dfppy)zPtz(C^OXT)z was synthesized and characterized, in which dfppy represents 2-(4',6'-difluorophenyl)pyridinato unit and CsOXT is abbreviated for 5-(4-octyloxyphenyl)-1,3,4-oxadiazole-2-thiol as a bridging ancillary ligand. Its photophysical, electrochemical and electroluminescent characteristics were primarily studied. The made single-emissive-layer (SEL) polymer light-emitting devices using (dfppy)2Ptz(CsOXT)2 as emitter exhibited a satu- rated red emission peaked at 620 nm. The best device performances were obtained in the device at 8 wt% dopant concentration, with a maximum external quantum efficiency of 8.4%, a current efficiency of 4.2 cd/A and brightness of 3228 cd/m~. This work provides an effective approach to obtain high-efficiency red emission through construction of new binuclear platinum complex and its doped SEL devices.展开更多
A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and ...A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and size of the Pt superparticles are readily tuned by varying the structures of pyridyl-containing ligands used in the synthesis. The co-presence of CO and nitrogen-containing ligands is critical to the formation of Pt supercubes. While CO molecules play an important role in the synthesis of Pt nanocube, introducing nitrogen-containing ligands is essential to the successful assembly of those nanocubes into Pt supercubes. Our systematic studies reveal that the electrostatic attraction between positively charged ligands and nega- tively charged Pt nanocubes is the main driving force for the assembly of Pt nanocubes into supercubes. More importantly, the ligands within the Pt supercubes are readily removed at relatively low expected to exhibit unique size-selective catalysis. temperature to yield surface-clean supercubes which are展开更多
基金supported by the National Natural Science Foundation of China(50973093,51273168,21202139)the Innovation Group Hunan Natural Science Foundation(12JJ7002)+2 种基金the Natural Science Foundation of Hunan(12JJ4019,11JJ3061)the Scientific Fundation of Hunan Provincial Education Department(10A119,11CY023,12B123)Postgraduate Science Foundation for Innovation in Hunan Province(CX2012B249)
文摘A novel red-emitting binuclear platinum complex (dfppy)zPtz(C^OXT)z was synthesized and characterized, in which dfppy represents 2-(4',6'-difluorophenyl)pyridinato unit and CsOXT is abbreviated for 5-(4-octyloxyphenyl)-1,3,4-oxadiazole-2-thiol as a bridging ancillary ligand. Its photophysical, electrochemical and electroluminescent characteristics were primarily studied. The made single-emissive-layer (SEL) polymer light-emitting devices using (dfppy)2Ptz(CsOXT)2 as emitter exhibited a satu- rated red emission peaked at 620 nm. The best device performances were obtained in the device at 8 wt% dopant concentration, with a maximum external quantum efficiency of 8.4%, a current efficiency of 4.2 cd/A and brightness of 3228 cd/m~. This work provides an effective approach to obtain high-efficiency red emission through construction of new binuclear platinum complex and its doped SEL devices.
基金supported by the National Basic Research Program of China(2011CB932403,2015CB932300)the National Natural Science Foundation of China(21420102001,21131005,21390390,21333008)
文摘A facile one-pot synthetic strategy is developed to prepare high-quality Pt supercubes. The as-synthesized Pt supercubes are composed of the uniform Pt nanocubes arranged in a primitive cubic structure. The shape and size of the Pt superparticles are readily tuned by varying the structures of pyridyl-containing ligands used in the synthesis. The co-presence of CO and nitrogen-containing ligands is critical to the formation of Pt supercubes. While CO molecules play an important role in the synthesis of Pt nanocube, introducing nitrogen-containing ligands is essential to the successful assembly of those nanocubes into Pt supercubes. Our systematic studies reveal that the electrostatic attraction between positively charged ligands and nega- tively charged Pt nanocubes is the main driving force for the assembly of Pt nanocubes into supercubes. More importantly, the ligands within the Pt supercubes are readily removed at relatively low expected to exhibit unique size-selective catalysis. temperature to yield surface-clean supercubes which are