To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in elect...To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in electrocatalytic activity (3x) and stability (60x) for methanol oxidation were found, suggesting promising applications in direct methanol fuel cells. The 3x and 60x improvements persist for Pt/Pd catalysts used to overcome the CO poisoning problem.展开更多
文摘To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in electrocatalytic activity (3x) and stability (60x) for methanol oxidation were found, suggesting promising applications in direct methanol fuel cells. The 3x and 60x improvements persist for Pt/Pd catalysts used to overcome the CO poisoning problem.