期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
SKS炼铅物质流变化对能耗的影响 被引量:4
1
作者 王洪才 时章明 +2 位作者 沈浩 陈通 姜信杰 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期2850-2854,共5页
构建SKS炼铅生产流程的基准物质流图,以某SKS炼铅法企业生产数据为依据,分别绘制该企业生产流程的实际物质流图和基准物质流图,并分析含铅物料在实际生产流程中偏离基准物质流图时对铅能耗的影响。从物质流和工序的角度分析可知:增大外... 构建SKS炼铅生产流程的基准物质流图,以某SKS炼铅法企业生产数据为依据,分别绘制该企业生产流程的实际物质流图和基准物质流图,并分析含铅物料在实际生产流程中偏离基准物质流图时对铅能耗的影响。从物质流和工序的角度分析可知:增大外加物质流、减小循环物质流和排放物质流会降低铅能耗,而且越是靠后的工序发生以上3种物质流对铅能耗的影响越大。 展开更多
关键词 SKS炼 物质流 基准物质流图 实际物质流图 铅能耗
下载PDF
氧气底吹炉熔炼一次粗铅的能耗分析 被引量:2
2
作者 杨珂利 时章明 《冶金能源》 2010年第3期14-16,31,共4页
氧气底吹熔炼-鼓风炉还原炼铅法是由我国自行开发的具有国际先进水平的炼铅新工艺。它与传统炼铅工艺最大的不同之处在于它采用氧气底吹炉熔炼一次粗铅过程取代了传统的烧结过程。文章利用系统节能理论中常用的投入产出模型对该生产过... 氧气底吹熔炼-鼓风炉还原炼铅法是由我国自行开发的具有国际先进水平的炼铅新工艺。它与传统炼铅工艺最大的不同之处在于它采用氧气底吹炉熔炼一次粗铅过程取代了传统的烧结过程。文章利用系统节能理论中常用的投入产出模型对该生产过程的能耗进行分析,提出了降低吨铅能耗的方法。 展开更多
关键词 氧气底吹炉 投入产出模型 铅能耗
下载PDF
A pre-warning system of abnormal energy consumption in lead smelting based on LSSVR-RP-CI 被引量:2
3
作者 WANG Hong-cai FANG Hong-ru +1 位作者 MENG Lei XU Feng-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2175-2184,共10页
The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are ... The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained. 展开更多
关键词 lead smelting energy consumption least square support vector regression (LSSVR) recurrence plots (RP) confidence intervals (CI)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部