An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carr...An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carried out in the mediumofl mol.L 1H2SO4 at room temperature. No maximum current appears on the potentiostatic current transients for the zinc deposition on lead and its alloys. With increasing overpotential, the progressive nucleation turns to be a 3D-instantaneous nucleation process for the resin-graphite composite. Hydrogen evolution on the graphite composite is effectively suppressed with the doping of a polymer resin. The hydrogen evolution reaction on the lead is relatively weak, while on the lead alloys, it becomes serious to a certain degree. Although the ex- change current density of zinc deposition and dissolution process on the graphite composite is relatively low, the zinc corrosion is weakened to a great extent. With the increase of deposition time, zinc deposits are more compact. The cyclings of zinc galvanostatic charge-discharge on the graphite composite provide more than 90% of coulombic and 80% of energy efficiencies, and exhibit superior cycling stability during the first 10 cycles.展开更多
Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increas...Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increases inner pressure and accelerates the water loss.In this review,the mechanism of hydrogen evolution reaction in advanced lead–acid batteries,including lead–carbon battery and ultrabattery,is briefly reviewed.The strategies on suppression hydrogen evolution via structure modifications of carbon materials and adding hydrogen evolution inhibitors are summarized as well.The review points out effective ways to inhibit hydrogen evolution and prolong the cycling life of advanced lead–acid battery,especially in high-rate partial-state-of-charge applications.展开更多
基金Supported by the National Basic Research Program(973 Program)of China(2010CB227201)the State Key Program of National Natural Science of China(21236003)+2 种基金the National Natural Science Foundation of China(21476022)the Fundamental Research Funds for the Central Universities(JD1515 and YS1406)Beijing Higher Education Young Elite Teacher Project(YETP0509)
文摘An investigation was performed on the suitability of carbon materials, metallic lead and its alloys as substrates for zinc negative electrode in acid PbO2-Zn single flow batteries. The zinc deposition process was carried out in the mediumofl mol.L 1H2SO4 at room temperature. No maximum current appears on the potentiostatic current transients for the zinc deposition on lead and its alloys. With increasing overpotential, the progressive nucleation turns to be a 3D-instantaneous nucleation process for the resin-graphite composite. Hydrogen evolution on the graphite composite is effectively suppressed with the doping of a polymer resin. The hydrogen evolution reaction on the lead is relatively weak, while on the lead alloys, it becomes serious to a certain degree. Although the ex- change current density of zinc deposition and dissolution process on the graphite composite is relatively low, the zinc corrosion is weakened to a great extent. With the increase of deposition time, zinc deposits are more compact. The cyclings of zinc galvanostatic charge-discharge on the graphite composite provide more than 90% of coulombic and 80% of energy efficiencies, and exhibit superior cycling stability during the first 10 cycles.
基金supported by the Science and Technology Program of State Grid Corporation of Chinathe National Thousand Talents Program of China
文摘Integrating high content carbon into the negative electrodes of advanced lead–acid batteries effectively eliminates the sulfation and improves the cycle life,but brings the problem of hydrogen evolution,which increases inner pressure and accelerates the water loss.In this review,the mechanism of hydrogen evolution reaction in advanced lead–acid batteries,including lead–carbon battery and ultrabattery,is briefly reviewed.The strategies on suppression hydrogen evolution via structure modifications of carbon materials and adding hydrogen evolution inhibitors are summarized as well.The review points out effective ways to inhibit hydrogen evolution and prolong the cycling life of advanced lead–acid battery,especially in high-rate partial-state-of-charge applications.