通过大田试验,在轻度镉-铅复合污染菜地向小白菜叶面喷施不同浓度的硅溶胶、铈溶胶及硅铈复合溶胶,研究其对产量、品质、抗氧化酶活性及Cd、Pb吸收的影响。结果表明,喷施硅铈溶胶均能促进小白菜生长,增加小白菜生物量和提高维生素C、可...通过大田试验,在轻度镉-铅复合污染菜地向小白菜叶面喷施不同浓度的硅溶胶、铈溶胶及硅铈复合溶胶,研究其对产量、品质、抗氧化酶活性及Cd、Pb吸收的影响。结果表明,喷施硅铈溶胶均能促进小白菜生长,增加小白菜生物量和提高维生素C、可溶性糖的含量,降低亚硝酸盐的含量;显著增强抗氧化系统保护酶(SOD、POD)活性和降低小白菜地下部、地上部中镉、铅的含量及累积量。在不同浓度的施硅和施铈处理中,喷施0.50 g kg-1SiO2处理和0.20 g kg-1CeO2处理在增产、提升品质和缓解重金属对小白菜毒害上效果最佳,喷施硅铈复合溶胶虽效果显著,但与单独施硅、施铈相比无明显提高。展开更多
A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO...A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO) could promote the formation of Lu-O-Si bonds in precursor, which was beneficial to the formation of LPS phase. X-ray diffraction (XRD) patterns indicated that the single-phased LPS powder was well crystallized at 1050℃. Microstructure observation demonstrated that the synthetic LPS powder was composed of ellipsoidal grains with the mean size of 40 nm. The luminescent properties were characterized by photoluminescence (PL), X-ray excited luminescence (XEL) and vacuum ultraviolet (VUV) spectroscopy at room temperature. The synthetic LPS:Ce powder emitted a broad emission spectrum centered at about 380 nm, which should be ascribed to the 5d→4f transition of Ce3+. Decay time of the synthetic LPS:Ce powder was measured to be only 32 ns.展开更多
文摘通过大田试验,在轻度镉-铅复合污染菜地向小白菜叶面喷施不同浓度的硅溶胶、铈溶胶及硅铈复合溶胶,研究其对产量、品质、抗氧化酶活性及Cd、Pb吸收的影响。结果表明,喷施硅铈溶胶均能促进小白菜生长,增加小白菜生物量和提高维生素C、可溶性糖的含量,降低亚硝酸盐的含量;显著增强抗氧化系统保护酶(SOD、POD)活性和降低小白菜地下部、地上部中镉、铅的含量及累积量。在不同浓度的施硅和施铈处理中,喷施0.50 g kg-1SiO2处理和0.20 g kg-1CeO2处理在增产、提升品质和缓解重金属对小白菜毒害上效果最佳,喷施硅铈复合溶胶虽效果显著,但与单独施硅、施铈相比无明显提高。
基金supported by the National Natural Science Foundation of China(Grant No.51172139)
文摘A novel sol-gel processing was developed to synthesize polycrystalline cerium-doped lutetium pyrosilicate (Lu2Si2O7Ce, LPS :Ce) powders under low temperature. It was found that the addition of propylene oxide (PPO) could promote the formation of Lu-O-Si bonds in precursor, which was beneficial to the formation of LPS phase. X-ray diffraction (XRD) patterns indicated that the single-phased LPS powder was well crystallized at 1050℃. Microstructure observation demonstrated that the synthetic LPS powder was composed of ellipsoidal grains with the mean size of 40 nm. The luminescent properties were characterized by photoluminescence (PL), X-ray excited luminescence (XEL) and vacuum ultraviolet (VUV) spectroscopy at room temperature. The synthetic LPS:Ce powder emitted a broad emission spectrum centered at about 380 nm, which should be ascribed to the 5d→4f transition of Ce3+. Decay time of the synthetic LPS:Ce powder was measured to be only 32 ns.