提出了硫化铋精矿低温碱性熔炼粗铋的新工艺,考察了w(NaOH)/w(Na2CO3)、碱量、温度和时间等因素对熔炼的影响。结果表明,在w(NaOH)/w(Na2CO3)=20/133、碱量为1.64倍理论量、温度800℃、时间1.5 h的最优条件下,金属铋的直收率可达94.02%...提出了硫化铋精矿低温碱性熔炼粗铋的新工艺,考察了w(NaOH)/w(Na2CO3)、碱量、温度和时间等因素对熔炼的影响。结果表明,在w(NaOH)/w(Na2CO3)=20/133、碱量为1.64倍理论量、温度800℃、时间1.5 h的最优条件下,金属铋的直收率可达94.02%,粗铋含B i 98%,该工艺具有低温、清洁、直收率高等特点。展开更多
A new hydrometallurgical process based on the methanesulfonic acid system was proposed to extract the bismuth efficiently from by-products of lead smelting.The bismuth extraction process included electrorefining,oxida...A new hydrometallurgical process based on the methanesulfonic acid system was proposed to extract the bismuth efficiently from by-products of lead smelting.The bismuth extraction process included electrorefining,oxidation leaching,and electrodeposition.The optimum conditions of the bismuth extraction process were determined by a single-factor test.The bismuth plate with a purity of 99.8%was obtained under the optimum conditions.Cyclic voltammetry and linear sweep voltammetry were applied to investigating the cathode reaction mechanism of electrorefining.The results show that lead deposition,bismuth deposition,and hydrogen evolution occur at the cathode,and the reactions of metals deposition are irreversible and diffusion-controlled.In addition,decreasing the temperature and acidity can improve the purity of the cathodic product(lead powder)in the electrorefining process.展开更多
Simultaneous equilibrium was applied to the thermodynamic analysis and calculation of Bi(Ⅲ)-X(Cl-, NO-3)-H2O systems, based on which the diagrams of the logarithm of equilibrium concentration of Bi(Ⅲ) of serie...Simultaneous equilibrium was applied to the thermodynamic analysis and calculation of Bi(Ⅲ)-X(Cl-, NO-3)-H2O systems, based on which the diagrams of the logarithm of equilibrium concentration of Bi(Ⅲ) of series precipitation vs pH value of these two systems at 25 ℃ were obtained, and the pH ranges of the stable zones of various precipitations were analyzed and determined. In Bi(Ⅲ)-Cl--H2O system, the variations of c0(Bi3+) and (c0(Cl-)) have little effect on the equilibria of Bi(OH)3-solution and BiOOH-solution, but has great influence on the (equilibrium) of BiOCl-solution. However, in Bi(Ⅲ)-NO-3-H2O system, the variations of c0(Bi3+) and c0(NO-3) have little effect on equilibria of Bi(OH)3-solution, BiOOH-solution and Bi2O3-solution. When pH value is high, Bi2O3 is the thermodynamic stable phase, its stable zone is the widest, almost including the stable zones of BiOCl or (BiONO3,) (Bi(OH)3) and BiOOH. Bi(OH)3 cannot be obtained from Bi(Ⅲ)-Cl--H2O system, even strong alkaline media. Bi2O3 can be obtained from the solution directly, and highly pure BiOCl or BiONO3 can also be obtained through strictly controlling pH value.展开更多
文摘提出了硫化铋精矿低温碱性熔炼粗铋的新工艺,考察了w(NaOH)/w(Na2CO3)、碱量、温度和时间等因素对熔炼的影响。结果表明,在w(NaOH)/w(Na2CO3)=20/133、碱量为1.64倍理论量、温度800℃、时间1.5 h的最优条件下,金属铋的直收率可达94.02%,粗铋含B i 98%,该工艺具有低温、清洁、直收率高等特点。
基金financial supports from the National Key Research and Development Program of China(No.2018YFC1900403)。
文摘A new hydrometallurgical process based on the methanesulfonic acid system was proposed to extract the bismuth efficiently from by-products of lead smelting.The bismuth extraction process included electrorefining,oxidation leaching,and electrodeposition.The optimum conditions of the bismuth extraction process were determined by a single-factor test.The bismuth plate with a purity of 99.8%was obtained under the optimum conditions.Cyclic voltammetry and linear sweep voltammetry were applied to investigating the cathode reaction mechanism of electrorefining.The results show that lead deposition,bismuth deposition,and hydrogen evolution occur at the cathode,and the reactions of metals deposition are irreversible and diffusion-controlled.In addition,decreasing the temperature and acidity can improve the purity of the cathodic product(lead powder)in the electrorefining process.
文摘Simultaneous equilibrium was applied to the thermodynamic analysis and calculation of Bi(Ⅲ)-X(Cl-, NO-3)-H2O systems, based on which the diagrams of the logarithm of equilibrium concentration of Bi(Ⅲ) of series precipitation vs pH value of these two systems at 25 ℃ were obtained, and the pH ranges of the stable zones of various precipitations were analyzed and determined. In Bi(Ⅲ)-Cl--H2O system, the variations of c0(Bi3+) and (c0(Cl-)) have little effect on the equilibria of Bi(OH)3-solution and BiOOH-solution, but has great influence on the (equilibrium) of BiOCl-solution. However, in Bi(Ⅲ)-NO-3-H2O system, the variations of c0(Bi3+) and c0(NO-3) have little effect on equilibria of Bi(OH)3-solution, BiOOH-solution and Bi2O3-solution. When pH value is high, Bi2O3 is the thermodynamic stable phase, its stable zone is the widest, almost including the stable zones of BiOCl or (BiONO3,) (Bi(OH)3) and BiOOH. Bi(OH)3 cannot be obtained from Bi(Ⅲ)-Cl--H2O system, even strong alkaline media. Bi2O3 can be obtained from the solution directly, and highly pure BiOCl or BiONO3 can also be obtained through strictly controlling pH value.