采用固相烧结法制备铋层结构Na 0.5 Bi 4.5 Ta x Ti 4-x O 15+0.5 x(NBT-Ta-x)(x=0~0.20)压电陶瓷。采用X射线衍射、扫描电镜和自动控温测试系统研究Ta 5+的B位掺杂对NBT-Ta-x陶瓷的微观结构、电导、介电和压电性能的影响。结果表明:随T...采用固相烧结法制备铋层结构Na 0.5 Bi 4.5 Ta x Ti 4-x O 15+0.5 x(NBT-Ta-x)(x=0~0.20)压电陶瓷。采用X射线衍射、扫描电镜和自动控温测试系统研究Ta 5+的B位掺杂对NBT-Ta-x陶瓷的微观结构、电导、介电和压电性能的影响。结果表明:随Ta掺杂量的增加,晶粒尺寸和长径比逐渐减小,表现出沿c轴的取向生长,同时,陶瓷的理论密度和体积密度增加,在掺杂量x=0.05时达到最高的相对密度96.1%,Ta在NBT晶格中的固溶极限在0.10附近。随Ta 5+掺杂量x增加到0.20,陶瓷的居里温度从680℃降至658℃。Ta 5+掺杂使NBT-Ta-x陶瓷的电阻率增加了两个数量级,压电常数d 33从13.8 pC/N增加到23 pC/N。当x=0.04~0.05时,NBT-Ta-x陶瓷的综合电性能良好:T c=670~672℃,d 33=21.8~23 pC/N,k p=7.9%~8.3%。展开更多
The photocatalytic degradation of norfloxacin by bismuth tungstate(Bi2WO6)with different hierarchical architectures wasinvestigated under visible light irradiation.Bi2WO6was prepared by hydrothermal method with the re...The photocatalytic degradation of norfloxacin by bismuth tungstate(Bi2WO6)with different hierarchical architectures wasinvestigated under visible light irradiation.Bi2WO6was prepared by hydrothermal method with the reaction solution pH rangingfrom4to11.The relatively ultrathin Bi2WO6nanoflakes prepared at pH4showed excellent adsorption and photodegradationefficiency towards norfloxacin.The characterization results showed that Bi2WO6prepared at pH4had a larger specific area andfaster photo-generated carrier separation rate.The decay rate reached the maximum in weak alkaline reaction solution,which couldbe attributed to the presence of moderate OH-anions.The present study demonstrated that the smaller size of Bi2WO6could be anefficient photocatalyst on the degradation of norfloxacin in the aquatic environment.展开更多
The hierarchical BiOClxBr1–x was synthesized by a simple solvothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible diffuse ref...The hierarchical BiOClxBr1–x was synthesized by a simple solvothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller adsorption method. Compared to pure BiOCl or BiOBr, the BiOClxBr1–x solid solution has enhanced photocatalytic degradation activity for rhodamine B. This phenomenon can be explained to the hierarchical structure, lager specific surface area and appropriate energy gap of the obtained BiOClxBr1–x solid solution. The renewability and stability of photocatalyst were determinated and a possible mechanism of photocatalytic degradation was also proposed.展开更多
文摘采用固相烧结法制备铋层结构Na 0.5 Bi 4.5 Ta x Ti 4-x O 15+0.5 x(NBT-Ta-x)(x=0~0.20)压电陶瓷。采用X射线衍射、扫描电镜和自动控温测试系统研究Ta 5+的B位掺杂对NBT-Ta-x陶瓷的微观结构、电导、介电和压电性能的影响。结果表明:随Ta掺杂量的增加,晶粒尺寸和长径比逐渐减小,表现出沿c轴的取向生长,同时,陶瓷的理论密度和体积密度增加,在掺杂量x=0.05时达到最高的相对密度96.1%,Ta在NBT晶格中的固溶极限在0.10附近。随Ta 5+掺杂量x增加到0.20,陶瓷的居里温度从680℃降至658℃。Ta 5+掺杂使NBT-Ta-x陶瓷的电阻率增加了两个数量级,压电常数d 33从13.8 pC/N增加到23 pC/N。当x=0.04~0.05时,NBT-Ta-x陶瓷的综合电性能良好:T c=670~672℃,d 33=21.8~23 pC/N,k p=7.9%~8.3%。
基金Projects(51579096,51222805,51521006,51508175) supported by the National Natural Science Foundation of ChinaProject supported by the National Program for Support of Top-Notch Young Professionals of China+1 种基金Project(NCET–11–0129) supported by the Program for New Century Excellent Talents in University from the Ministry of Education of ChinaProject(CX2015B095) supported by the Hunan Province Innovation Foundation for Postgraduate,China
文摘The photocatalytic degradation of norfloxacin by bismuth tungstate(Bi2WO6)with different hierarchical architectures wasinvestigated under visible light irradiation.Bi2WO6was prepared by hydrothermal method with the reaction solution pH rangingfrom4to11.The relatively ultrathin Bi2WO6nanoflakes prepared at pH4showed excellent adsorption and photodegradationefficiency towards norfloxacin.The characterization results showed that Bi2WO6prepared at pH4had a larger specific area andfaster photo-generated carrier separation rate.The decay rate reached the maximum in weak alkaline reaction solution,which couldbe attributed to the presence of moderate OH-anions.The present study demonstrated that the smaller size of Bi2WO6could be anefficient photocatalyst on the degradation of norfloxacin in the aquatic environment.
基金Project(2016TP1007)supported by the Hunan Provincial Science and Technology Plan Project,China
文摘The hierarchical BiOClxBr1–x was synthesized by a simple solvothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller adsorption method. Compared to pure BiOCl or BiOBr, the BiOClxBr1–x solid solution has enhanced photocatalytic degradation activity for rhodamine B. This phenomenon can be explained to the hierarchical structure, lager specific surface area and appropriate energy gap of the obtained BiOClxBr1–x solid solution. The renewability and stability of photocatalyst were determinated and a possible mechanism of photocatalytic degradation was also proposed.