The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (ωRh = 0-100%) is well d...The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (ωRh = 0-100%) is well described by the Temkin logarithmic isotherm. The surface coverage by adsorbed hydrogen at the same potential is decreased with increasing content of rhodium in the system. A linear dependence of adsorption peak potential on the alloy compositions in the case of weakly bonded adsorbed hydrogen is established. Hydrogen adsorption heat as a function of surface coverage for Pt-Rh-electrodes was obtained. The shape of the current-potential curve and position of the weakly bonded hydrogen adsorption on the potential scale are all related to alloy compositions, thus can serve as the basis for the determination surface composition of alloys.展开更多
The catalytic hydrogenation of halonitroarenes to haloanilines is a green and sustainable process for the production of key nitrogen-containing intermediates in fine chemical industry.Chemoselective hydrogenation pose...The catalytic hydrogenation of halonitroarenes to haloanilines is a green and sustainable process for the production of key nitrogen-containing intermediates in fine chemical industry.Chemoselective hydrogenation poses a significant challenge,which requires the rational design of the catalysts with proper hydrogenation ability for nitro group and simultaneously preventing dehalogenation of halogen group.Herein,a highly effective Rh@Al_(2)O_(3)@C single-atom catalyst(SAC)was developed for the hydrogenation of m-chloronitrobenzene(m-CNB)to m-chloroaniline(m-CAN),through an in-situ grafting of metal during the assembly of MIL-53(Al),followed by confined pyrolysis.Extensive characterizations reveal an exquisite structure of the Rh@Al_(2)O_(3)@C,containing atomically dispersed Rh sites onto Al_(2)O_(3) confined by the amorphous carbon.The five-coordinated aluminum(Al^(Ⅴ))species are essential for achieving the atomic dispersion of Rh atoms,providing the unsaturated coordinative sites for metal.Compared to the benchmark Rh/γ-Al_(2)O_(3) and Rh/C nanocatalysts,the Rh@Al_(2)O_(3)@C SAC affords an excellent turnover frequency of 2317 molm-CNB·molRh^(–1)·h^(–1),the highest value to date in heterogeneous catalyst systems for the hydrogenation of m-CNB at 313 K and 20 bar H2,together with a sustained selectivity to m-CAN(~98%)during five consecutive runs.The superior catalytic performance of the Rh@Al_(2)O_(3)@C is attributed to a proper modulation of electronic structure of hydrogenation metal by forming SAC,together with an enhanced accessibility of acid function sites.展开更多
Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic pe...Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.展开更多
文摘The hydrogen adsorption on Pt-Rh alloys in sulfuric acid aqueous solutions was studied by the method of cathode pulses. Hydrogen adsorption on the electrode with all ratio of alloy components (ωRh = 0-100%) is well described by the Temkin logarithmic isotherm. The surface coverage by adsorbed hydrogen at the same potential is decreased with increasing content of rhodium in the system. A linear dependence of adsorption peak potential on the alloy compositions in the case of weakly bonded adsorbed hydrogen is established. Hydrogen adsorption heat as a function of surface coverage for Pt-Rh-electrodes was obtained. The shape of the current-potential curve and position of the weakly bonded hydrogen adsorption on the potential scale are all related to alloy compositions, thus can serve as the basis for the determination surface composition of alloys.
文摘The catalytic hydrogenation of halonitroarenes to haloanilines is a green and sustainable process for the production of key nitrogen-containing intermediates in fine chemical industry.Chemoselective hydrogenation poses a significant challenge,which requires the rational design of the catalysts with proper hydrogenation ability for nitro group and simultaneously preventing dehalogenation of halogen group.Herein,a highly effective Rh@Al_(2)O_(3)@C single-atom catalyst(SAC)was developed for the hydrogenation of m-chloronitrobenzene(m-CNB)to m-chloroaniline(m-CAN),through an in-situ grafting of metal during the assembly of MIL-53(Al),followed by confined pyrolysis.Extensive characterizations reveal an exquisite structure of the Rh@Al_(2)O_(3)@C,containing atomically dispersed Rh sites onto Al_(2)O_(3) confined by the amorphous carbon.The five-coordinated aluminum(Al^(Ⅴ))species are essential for achieving the atomic dispersion of Rh atoms,providing the unsaturated coordinative sites for metal.Compared to the benchmark Rh/γ-Al_(2)O_(3) and Rh/C nanocatalysts,the Rh@Al_(2)O_(3)@C SAC affords an excellent turnover frequency of 2317 molm-CNB·molRh^(–1)·h^(–1),the highest value to date in heterogeneous catalyst systems for the hydrogenation of m-CNB at 313 K and 20 bar H2,together with a sustained selectivity to m-CAN(~98%)during five consecutive runs.The superior catalytic performance of the Rh@Al_(2)O_(3)@C is attributed to a proper modulation of electronic structure of hydrogenation metal by forming SAC,together with an enhanced accessibility of acid function sites.
文摘Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.