Extracellular polymeric substances (EPS) were extracted from Acidithiobacillus ferrooxidans through sonication method associated with centrifugation, which was evaluated tentatively with 2-keto-3-deoxyoctonic acid ...Extracellular polymeric substances (EPS) were extracted from Acidithiobacillus ferrooxidans through sonication method associated with centrifugation, which was evaluated tentatively with 2-keto-3-deoxyoctonic acid (KDO) as the indicator of EPS by spectrophotometry. Then the effect of EPS of A. ferrooxidans on the adhesion on chalcopyrite and pyrite surfaces was studied through a series of comparative experiments. The untreated cells and EPS-free cells of A. ferrooxidans were mixed with EPS suspension, Fe^2+ or Fe^3+, respectively. The planktonic cells were monitored in 2 h during bioleaching. The results indicate that the presence of EPS on the cell is an important factor for the adhesion to chalcopyrite and pyrite. A decrease of attachment of A. ferrooxidans to minerals was produced by the deficiency of EPS, which can recover mostly when the EPS was re-added into the EPS-free cells. The restoring extent is more obvious in pyrite than in chalcopyrite. The extent of cell adhesion to chalcopyrite increased when EPS and Fe^3+ added, and decreased when Fe^2+ added, which imply the electrostatic interaction plays a main role in initial adhesion between bacteria and minerals and it is a driving force for bacteria to produce EPS probably as a result of regaining their attachment ability to copper sulphides.展开更多
The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphi...The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphilum cultured using different energy sources(either soluble ferrous ion or chalcopyrite) were used.The adhesion of bacteria to the chalcopyrite surface was a fast process.Additionally,the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones.The isoelectric point(IEP) of chalcopyrite moved toward that of pure L.ferriphilum after conditioning with bacteria.The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source.The results of X-ray diffraction patterns(XRD),scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L.ferriphilum.Furthermore,EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching.The copper extraction is low,resulting from the formation of a passivation layer on the surface of chalcopyrite.The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite.展开更多
The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different condition...The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.展开更多
Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passi...Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passivation of chalcopyrite was greatly weakened in strengthening leaching due to the change of leaching conditions. The copper leaching efficiency was increased from 50% to 89.8% through adding beads. The SEM and X-ray diffraction (XRD) analyses illustrate that there are few jarosite precipitates and weak passivation on the surface of chalcopyrite in strengthening leaching. In contrast, there are thick and compact jarosite precipitate and obvious passivation in ordinary leaching, which hinders further dissolution of chalcopyrite.展开更多
In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vor...In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vortexing were used and sonication at 48℃ was shown as a good way to extract ferric iron. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis showed that lots of cracks and pits can be found on the chalcopyrite surface after bioleaching and that iron oxide was filled in these cracks and pits. The variations of contents of ferric iron and EPS on the chalcopyrite surface were investigated. The results indicated that the content of EPS increased rapidly in the first 10 d and then maintained at a stable level, while ferric iron content increased all the time, especially in the later stage of bioleaching.展开更多
The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleachi...The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleaching. The results indicate that the extracellular protein is always more than the extracellular polysaccharide secreted by attached cells on the chalcopyrite, on the contrary, and is always less than the extracellular polysaccharide secreted by free cells in the solution at bacterial adaptive phase, logarithmic phase and stationary phase whenever pH value is at 1.0, 1.5, 2.0 or 2.5; free cells are mainly through the secretion of extracellular polysaccharide rather than the extracellular protein to fight against disadvantageous solution environment, such as high concentration of metal ions and unsuitable pH solution; both amounts of polysaccharide and protein secreted by attached cells are mainly positively related to the solution acidity rather than the total concentration of soluble metal ions. The experimental results imply that bacteria are mainly through secreting more extracellular polysaccharide to fight against disadvantageous environment and the extracellular protein perhaps plays an important role in oxidation?reduction reactions in the bioleaching system.展开更多
This study investigated the effects of H2O2 treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis tech...This study investigated the effects of H2O2 treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis techniques.Flotation test results showed that H2O2 treatment influenced the flotation behaviors of the two minerals;however,flotation of pyrite was depressed more significantly than that of the chalcopyrite.Under well-controlled H2O2 concentration,the selective separation of chalcopyrite from pyrite was realized at pH 9.0,at which the recovery of chalcopyrite was over 84%and that of pyrite was less than 24%.Zeta potential,UV-visible and IR spectrum measurements revealed that the collector interacted differently with the two minerals after H2O2 treatment,and the surface of chalcopyrite adsorbed much greater amount of xanthate than that of the pyrite.IR and XPS analyses showed that the H2O2 treatment significantly changed the surface properties of pyrite to very hydrophilic species that inhibited the adsorption of collector and thus depressed the floatability of pyrite.While,the surface of chalcopyrite remained mildly inert to H2O2,as a result,the adsorption of xanthate and its oxidation to dixanthogen were very effective,which enhanced the flotation of chalcopyrite.展开更多
Ammonia leaching kinetics of a complex Cu-ore assaying 8.8% Cu and 36.1% Fe was examined. Mineralogical characterization indicated that the major phase of the ore was siderite with chalcopyrite as the major sulfide mi...Ammonia leaching kinetics of a complex Cu-ore assaying 8.8% Cu and 36.1% Fe was examined. Mineralogical characterization indicated that the major phase of the ore was siderite with chalcopyrite as the major sulfide mineral. The effects of parameters such as agitation, temperature, NH3 concentration, particle size and oxygen partial pressure (Po2) were investigated. Under the standard leaching conditions of 125-212 μm particle size, 120 ℃, 1.29 mol/L NH3 and 202 kPa ofpo2, about 83% Cu could be selectively extracted in 2.5 h. However, when using higher NH3 concentration and lower particle size, more than 95% extraction was achieved. The leaching process was found to be surface reaction controlling. The estimated activation energy was (37.6±1.9) kJ/mol and empirical orders of reaction with respect topos and [NH3] were about 0.2 and 1, respectively.展开更多
Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-...Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.展开更多
Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method,...Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method, Xray diffraction and scanning electron microscope-energy dispersive spectrum. It turned out that chalcopyrite(Cu) and pyrite(S) were the main recoverable minerals in the tailing. In order to separate chalcopyrite from pyrite in low pulp pH, ammonium humate(AH) was singled out as the effective regulator. The depression mechanism of AH on the flotation of pyrite was proved by FTIR spectrum and XPS spectrum, demonstrating that there was a chemical adsorption between AH and pyrite. By Response Surface Methodology(RSM), the interaction between AH, pulp pH and iso-butyl ethionine(Z200) was discussed. It was illustrated that the optimal dosage of AH was 1678 g·t^(-1) involving both the recovery of Cu and S. The point prediction by RSM and the closed-circuit flotation displayed that the qualified Cu concentrate and S concentrate could be obtained from the copper tailing.The study indicated that AH was a promising pyrite depressor in the low pulp pH from copper tailings.展开更多
The characteristics of N-propyl-N′-ethoxycarbonyl thiourea(PECTU) were studied in the flotation experiments of chalcopyrite and pyrite compared with butyl xanthate(BX). The interaction mechanism between mineral a...The characteristics of N-propyl-N′-ethoxycarbonyl thiourea(PECTU) were studied in the flotation experiments of chalcopyrite and pyrite compared with butyl xanthate(BX). The interaction mechanism between mineral and PECTU was investigated according to zeta potential and electrochemistry measurements in the presence of PECTU. The results proved that PECTU performed a stronger ability to capture chalcopyrite and a better selectivity against pyrite. The zeta potential of chalcopyrite was positively shifted after interacting with PECTU, which indicated that the collector PECTU was obviously adsorbed on chalcopyrite surface. The cyclic voltammetry and Tafel curves results indicated that the oxidation and corrosion rates of chalcopyrite surface were limited in the presence of PECTU, while the effect of PECTU on pyrite in weak alkaline solution can be neglected basically according to the results of zeta potential and electrochemical tests.展开更多
In order to selectively separate chalcopyrite from pyrite,the effect of organic depressant lignosulfonate calcium(LSC) on the flotation separation of chalcopyrite from pyrite was investigated by flotation tests. The d...In order to selectively separate chalcopyrite from pyrite,the effect of organic depressant lignosulfonate calcium(LSC) on the flotation separation of chalcopyrite from pyrite was investigated by flotation tests. The depression mechanism was studied by Fourier-transform-infrared(FTIR) analysis. The flotation tests of single mineral show that LSC can depress the flotation of pyrite in a certain pH range,but it has little effect on chalcopyrite flotation. Flotation separation of a mixture of chalcopyrite and pyrite can be completed to obtain a copper concentrate grade up to 24.73% with a recovery of 80.36%. IR analysis shows that LSC and butyl xanthate compete in absorption on pyrite surface,and there exists an LSC characteristic peak on pyrite surface. There is little adsorption of LSC on chalcopyrite.展开更多
The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental ...The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental risk and realizing resource recovery.The formation of arsenic−copper-containing particles was simulated,the method of in-situ decomposition of arsenic−copper-containing particles by pyrite was proposed,and the decomposition mechanism was confirmed.It was found that particles with high arsenic content were formed in the simulated HRSG,and copper arsenate was liable for the high arsenic content.Pyrite promoted the sulfation of copper,leading to the in-situ decomposition of copper arsenate.In this process,gaseous arsenic was released,and thus the separation of arsenic and copper was realized.展开更多
In this paper,Sulfobacillus thermosulfidooxidans ST was selected for use in bioleaching of pyrite and chalcopyrite.The adsorption experiments revealed that more cells were adsorbed on the surface of pyrite than on the...In this paper,Sulfobacillus thermosulfidooxidans ST was selected for use in bioleaching of pyrite and chalcopyrite.The adsorption experiments revealed that more cells were adsorbed on the surface of pyrite than on the surface of chalcopyrite.The role of extracellular DNA(eDNA)in the bioleaching process was investigated by depletion of eDNA using DNase I.The number of cells attached on the chalcopyrite and pyrite surfaces decreased on a large scale,and the lag phase of cell growth increased,causing the leaching percentages of pyrite and chalcopyrite to decrease by approximately 11.6%and 20.5%,respectively.The formation and distribution of eDNA secreted during bioleaching was assessed by a fluorescent dye-based method and visualized by confocal laser scanning microscopy(CLSM).The content of eDNA increased with bioleaching time.Furthermore,ST showed a stronger capacity to produce eDNA on the surface of pyrite than on the surface of chalcopyrite.These results showed that the removal of eDNA has a more significant effect on the bioleaching of chalcopyrite than on pyrite.展开更多
As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electr...As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.展开更多
基金Project (2010CB630901) supported by the National Basic Research Program of ChinaProject (50621063) supported by the National Natural Science Foundation of China
文摘Extracellular polymeric substances (EPS) were extracted from Acidithiobacillus ferrooxidans through sonication method associated with centrifugation, which was evaluated tentatively with 2-keto-3-deoxyoctonic acid (KDO) as the indicator of EPS by spectrophotometry. Then the effect of EPS of A. ferrooxidans on the adhesion on chalcopyrite and pyrite surfaces was studied through a series of comparative experiments. The untreated cells and EPS-free cells of A. ferrooxidans were mixed with EPS suspension, Fe^2+ or Fe^3+, respectively. The planktonic cells were monitored in 2 h during bioleaching. The results indicate that the presence of EPS on the cell is an important factor for the adhesion to chalcopyrite and pyrite. A decrease of attachment of A. ferrooxidans to minerals was produced by the deficiency of EPS, which can recover mostly when the EPS was re-added into the EPS-free cells. The restoring extent is more obvious in pyrite than in chalcopyrite. The extent of cell adhesion to chalcopyrite increased when EPS and Fe^3+ added, and decreased when Fe^2+ added, which imply the electrostatic interaction plays a main role in initial adhesion between bacteria and minerals and it is a driving force for bacteria to produce EPS probably as a result of regaining their attachment ability to copper sulphides.
基金Project (2010CB630903) supported by the National Basic Research Program of China
文摘The alteration of surface properties of chalcopyrite after biological conditioning with Leptospirillum ferriphilum was studied by adsorption,zeta-potential,contact angle and bioleaching tests.The strains of L.ferriphilum cultured using different energy sources(either soluble ferrous ion or chalcopyrite) were used.The adhesion of bacteria to the chalcopyrite surface was a fast process.Additionally,the adsorption of substrate-grown bacteria was greater and faster than that of liquid-grown ones.The isoelectric point(IEP) of chalcopyrite moved toward that of pure L.ferriphilum after conditioning with bacteria.The chalcopyrite contact angle curves motioned diversely in the culture with or without energy source.The results of X-ray diffraction patterns(XRD),scanning electron microscopy(SEM) and energy-dispersive X-ray spectroscopy(EDS) analysis indicate that the surface of chalcopyrite is covered with sulfur and jarosite during the bioleaching process by L.ferriphilum.Furthermore,EDS results imply that iron phase dissolves preferentially from chalcopyrite surface during bioleaching.The copper extraction is low,resulting from the formation of a passivation layer on the surface of chalcopyrite.The major component of the passivation layer that blocked continuous copper extraction is sulfur instead of jarosite.
基金Project(2010CB630904) supported by the National Basic Research Program of ChinaProject(50621063) supported by the Chinese Science Foundation for Distinguished Group
文摘The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.
基金Projects (51174062, 51104036, 50874030) supported by the National Natural Science Foundation of ChinaProjects (2012AA061502) supported by the High-tech Research and Development Program of ChinaProjects (N100602007) supported by the Fundamental Research Funds for the Central Universities, China
文摘Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passivation of chalcopyrite was greatly weakened in strengthening leaching due to the change of leaching conditions. The copper leaching efficiency was increased from 50% to 89.8% through adding beads. The SEM and X-ray diffraction (XRD) analyses illustrate that there are few jarosite precipitates and weak passivation on the surface of chalcopyrite in strengthening leaching. In contrast, there are thick and compact jarosite precipitate and obvious passivation in ordinary leaching, which hinders further dissolution of chalcopyrite.
基金Project(31200382)supported by the National Natural Science Foundation of ChinaProject(2013FJ4068)supported by the Planned Science and Technology Project of Hunan Province,ChinaProject supported by Australia CSIRO OCE Science Leader Grant
文摘In order to investigate the enrichment of ferric iron bound by extracellular polymeric substance (EPS) on the mineral surface during bioleaching of chalcopyrite, several methods including sonication, heating and vortexing were used and sonication at 48℃ was shown as a good way to extract ferric iron. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX) analysis showed that lots of cracks and pits can be found on the chalcopyrite surface after bioleaching and that iron oxide was filled in these cracks and pits. The variations of contents of ferric iron and EPS on the chalcopyrite surface were investigated. The results indicated that the content of EPS increased rapidly in the first 10 d and then maintained at a stable level, while ferric iron content increased all the time, especially in the later stage of bioleaching.
基金Project(31200382)supported by the National Natural Science Foundation of China
文摘The effect of pH values on the extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans was comparatively investigated in different phases of bacterial growth during chalcopyrite bioleaching. The results indicate that the extracellular protein is always more than the extracellular polysaccharide secreted by attached cells on the chalcopyrite, on the contrary, and is always less than the extracellular polysaccharide secreted by free cells in the solution at bacterial adaptive phase, logarithmic phase and stationary phase whenever pH value is at 1.0, 1.5, 2.0 or 2.5; free cells are mainly through the secretion of extracellular polysaccharide rather than the extracellular protein to fight against disadvantageous solution environment, such as high concentration of metal ions and unsuitable pH solution; both amounts of polysaccharide and protein secreted by attached cells are mainly positively related to the solution acidity rather than the total concentration of soluble metal ions. The experimental results imply that bacteria are mainly through secreting more extracellular polysaccharide to fight against disadvantageous environment and the extracellular protein perhaps plays an important role in oxidation?reduction reactions in the bioleaching system.
基金Projects(51704329,51705540) supported by the National Natural Science Foundation of ChinaProject(2015CX005) supported by the Innovation Driven Plan of Central South University,China+1 种基金Project(B14034) supported by the National “111” Project,ChinaProject(2018TP1002) supported by the Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘This study investigated the effects of H2O2 treatment on xanthate interaction and flotation separation of chalcopyrite and pyrite by making use of a series of laboratory flotation experiments and surface analysis techniques.Flotation test results showed that H2O2 treatment influenced the flotation behaviors of the two minerals;however,flotation of pyrite was depressed more significantly than that of the chalcopyrite.Under well-controlled H2O2 concentration,the selective separation of chalcopyrite from pyrite was realized at pH 9.0,at which the recovery of chalcopyrite was over 84%and that of pyrite was less than 24%.Zeta potential,UV-visible and IR spectrum measurements revealed that the collector interacted differently with the two minerals after H2O2 treatment,and the surface of chalcopyrite adsorbed much greater amount of xanthate than that of the pyrite.IR and XPS analyses showed that the H2O2 treatment significantly changed the surface properties of pyrite to very hydrophilic species that inhibited the adsorption of collector and thus depressed the floatability of pyrite.While,the surface of chalcopyrite remained mildly inert to H2O2,as a result,the adsorption of xanthate and its oxidation to dixanthogen were very effective,which enhanced the flotation of chalcopyrite.
文摘Ammonia leaching kinetics of a complex Cu-ore assaying 8.8% Cu and 36.1% Fe was examined. Mineralogical characterization indicated that the major phase of the ore was siderite with chalcopyrite as the major sulfide mineral. The effects of parameters such as agitation, temperature, NH3 concentration, particle size and oxygen partial pressure (Po2) were investigated. Under the standard leaching conditions of 125-212 μm particle size, 120 ℃, 1.29 mol/L NH3 and 202 kPa ofpo2, about 83% Cu could be selectively extracted in 2.5 h. However, when using higher NH3 concentration and lower particle size, more than 95% extraction was achieved. The leaching process was found to be surface reaction controlling. The estimated activation energy was (37.6±1.9) kJ/mol and empirical orders of reaction with respect topos and [NH3] were about 0.2 and 1, respectively.
基金Project (2003AA305820) supported by the National High-Tech Research and Development Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University, China
文摘Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.
基金Supported by the National Natural Science Foundation of China(51202249)the National High Technology Research and Development Program of China(2011AA06A104)the National Science&Technology Pillar Program during the 12th Five-year Plan Period(2012BAB08B04)
文摘Copper tailings constitute a large proportion of mine wastes. Some of the copper tailings can be recycled to recover valuable minerals. In this paper, a copper tailing was studied through the chemical analysis method, Xray diffraction and scanning electron microscope-energy dispersive spectrum. It turned out that chalcopyrite(Cu) and pyrite(S) were the main recoverable minerals in the tailing. In order to separate chalcopyrite from pyrite in low pulp pH, ammonium humate(AH) was singled out as the effective regulator. The depression mechanism of AH on the flotation of pyrite was proved by FTIR spectrum and XPS spectrum, demonstrating that there was a chemical adsorption between AH and pyrite. By Response Surface Methodology(RSM), the interaction between AH, pulp pH and iso-butyl ethionine(Z200) was discussed. It was illustrated that the optimal dosage of AH was 1678 g·t^(-1) involving both the recovery of Cu and S. The point prediction by RSM and the closed-circuit flotation displayed that the qualified Cu concentrate and S concentrate could be obtained from the copper tailing.The study indicated that AH was a promising pyrite depressor in the low pulp pH from copper tailings.
基金Project(51374249)supported by the National Natural Science Foundation of China
文摘The characteristics of N-propyl-N′-ethoxycarbonyl thiourea(PECTU) were studied in the flotation experiments of chalcopyrite and pyrite compared with butyl xanthate(BX). The interaction mechanism between mineral and PECTU was investigated according to zeta potential and electrochemistry measurements in the presence of PECTU. The results proved that PECTU performed a stronger ability to capture chalcopyrite and a better selectivity against pyrite. The zeta potential of chalcopyrite was positively shifted after interacting with PECTU, which indicated that the collector PECTU was obviously adsorbed on chalcopyrite surface. The cyclic voltammetry and Tafel curves results indicated that the oxidation and corrosion rates of chalcopyrite surface were limited in the presence of PECTU, while the effect of PECTU on pyrite in weak alkaline solution can be neglected basically according to the results of zeta potential and electrochemical tests.
基金Project(2006AA06Z120) supported by High-Technology Research and Development Program of ChinaProject(1343-74334000028) supported by the Graduate Student Education Innovation Project of Central South University, China
文摘In order to selectively separate chalcopyrite from pyrite,the effect of organic depressant lignosulfonate calcium(LSC) on the flotation separation of chalcopyrite from pyrite was investigated by flotation tests. The depression mechanism was studied by Fourier-transform-infrared(FTIR) analysis. The flotation tests of single mineral show that LSC can depress the flotation of pyrite in a certain pH range,but it has little effect on chalcopyrite flotation. Flotation separation of a mixture of chalcopyrite and pyrite can be completed to obtain a copper concentrate grade up to 24.73% with a recovery of 80.36%. IR analysis shows that LSC and butyl xanthate compete in absorption on pyrite surface,and there exists an LSC characteristic peak on pyrite surface. There is little adsorption of LSC on chalcopyrite.
基金financially supported by the National Science Fund for Excellent Young Scholars of China(No.52022111)the National Key Research and Development Program of China(Nos.2017YFC0210401,2018YFC1900306)+1 种基金the Distinguished Young Scholars of China(No.51825403)the National Natural Science Foundation of China(Nos.51634010,51974379).
文摘The heat recovery steam generator(HRSG)of copper smelting generates a large number of arsenic−coppercontaining particles,and the in-situ separation of arsenic and copper is of importance for cutting off environmental risk and realizing resource recovery.The formation of arsenic−copper-containing particles was simulated,the method of in-situ decomposition of arsenic−copper-containing particles by pyrite was proposed,and the decomposition mechanism was confirmed.It was found that particles with high arsenic content were formed in the simulated HRSG,and copper arsenate was liable for the high arsenic content.Pyrite promoted the sulfation of copper,leading to the in-situ decomposition of copper arsenate.In this process,gaseous arsenic was released,and thus the separation of arsenic and copper was realized.
基金Projects(31470230,51320105006,51604308)supported by the National Natural Science Foundation of ChinaProject(2017RS3003)supported by the Youth Talent Foundation of Hunan Province of China+1 种基金Project(2018JJ2486)supported by the Natural Science Foundation of Hunan Province of ChinaProject(2018WK2012)supported by the Key Research and Development Projects in Hunan Province,China。
文摘In this paper,Sulfobacillus thermosulfidooxidans ST was selected for use in bioleaching of pyrite and chalcopyrite.The adsorption experiments revealed that more cells were adsorbed on the surface of pyrite than on the surface of chalcopyrite.The role of extracellular DNA(eDNA)in the bioleaching process was investigated by depletion of eDNA using DNase I.The number of cells attached on the chalcopyrite and pyrite surfaces decreased on a large scale,and the lag phase of cell growth increased,causing the leaching percentages of pyrite and chalcopyrite to decrease by approximately 11.6%and 20.5%,respectively.The formation and distribution of eDNA secreted during bioleaching was assessed by a fluorescent dye-based method and visualized by confocal laser scanning microscopy(CLSM).The content of eDNA increased with bioleaching time.Furthermore,ST showed a stronger capacity to produce eDNA on the surface of pyrite than on the surface of chalcopyrite.These results showed that the removal of eDNA has a more significant effect on the bioleaching of chalcopyrite than on pyrite.
基金financial supports from the Open Foundation of State Key Laboratory of Mineral Processing,China (Nos.BGRIMM-KJSKL-2019-06,BGRIMMKJSKL-2022-13)the Open Fund of State Key Laboratory of Comprehensive Utilization of Low-Grade,China (No.ZJKY2017(B)KFJJ003)。
文摘As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.