In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and nu...In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and numerical modeling of EBW process during welding of PH-CuCrZr alloy components were carried out.A 3D finite element model was developed to predict the output responses(bead penetration and bead width)as a function of EBW input parameters(beam current,acceleration voltage and weld speed).A combined circular and conical source with Gaussian heat distribution was used to model the deep penetration characteristic of the EBW process.Numerical modeling was carried out by developing user defined function in Ansys software.Numerical predictions were compared with the experimental results which had a good agreement with each other.The developed model can be used for parametric study in wide range of problems involving complex geometries which are to be welded using EBW process.The present work illustrates that the input current with a contribution of 44.56%and 81.13%is the most significant input parameter for the bead penetration and bead width,respectively.展开更多
CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractu...CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractured surface displays ductile characteristics. In the metallurgical structure, CuCr alloys are composed of two phases of uniform distribution; the SEM morphology is like thin strips with an end arrangement that is bonded to each other and the two-phase distribution of CuCr alloys is more homogenous. It is in only in a very small zone that formation of Cu-rich and Cr-rich phases take place. The flaws of the compaction samples are mainly central-holes and cracks.展开更多
In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and th...In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively.展开更多
The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward ...The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu 2Ti compound which joins two parts to produce a brazing joint with higher strength.展开更多
The Cu Cr/1Cr18Ni9 Ti bi-metal materials were prepared by the solid-liquid bonding method. The microstructures, mechanical properties and formation mechanism of the bonding interface were studied. The results show tha...The Cu Cr/1Cr18Ni9 Ti bi-metal materials were prepared by the solid-liquid bonding method. The microstructures, mechanical properties and formation mechanism of the bonding interface were studied. The results show that there exists a serrated transition layer with a certain width at the interface of Cu Cr/1Cr18Ni9 Ti bi-metal materials, and the transition layer consists of Fe-based and Cu-based solid solutions. The elastic modulus and hardness reach the maximum values at the interface closing to the 1Cr18Ni9 Ti zone. The bonding temperature has a significant effect on the width and morphology of the transition layer. The interfacial bonding strength is at least 30% higher than that of the Cu Cr alloy, and the tensile fracture occurs at the side of the Cu Cr alloy rather than at the bonding interface.展开更多
文摘In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and numerical modeling of EBW process during welding of PH-CuCrZr alloy components were carried out.A 3D finite element model was developed to predict the output responses(bead penetration and bead width)as a function of EBW input parameters(beam current,acceleration voltage and weld speed).A combined circular and conical source with Gaussian heat distribution was used to model the deep penetration characteristic of the EBW process.Numerical modeling was carried out by developing user defined function in Ansys software.Numerical predictions were compared with the experimental results which had a good agreement with each other.The developed model can be used for parametric study in wide range of problems involving complex geometries which are to be welded using EBW process.The present work illustrates that the input current with a contribution of 44.56%and 81.13%is the most significant input parameter for the bead penetration and bead width,respectively.
文摘CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractured surface displays ductile characteristics. In the metallurgical structure, CuCr alloys are composed of two phases of uniform distribution; the SEM morphology is like thin strips with an end arrangement that is bonded to each other and the two-phase distribution of CuCr alloys is more homogenous. It is in only in a very small zone that formation of Cu-rich and Cr-rich phases take place. The flaws of the compaction samples are mainly central-holes and cracks.
基金Project(2006AA03Z528) supported by the National High-Tech Research and Development Program of ChinaProject(102102210174) supported by the Science and Technology Research Project of Henan Province,ChinaProject(2008ZDYY005) supported by Special Fund for Important Forepart Research in Henan University of Science and Technology
文摘In order to predict and control the properties of Cu-Cr-Sn-Zn alloy,a model of aging processes via an artificial neural network(ANN) method to map the non-linear relationship between parameters of aging process and the hardness and electrical conductivity properties of the Cu-Cr-Sn-Zn alloy was set up.The results show that the ANN model is a very useful and accurate tool for the property analysis and prediction of aging Cu-Cr-Sn-Zn alloy.Aged at 470-510 ℃ for 4-1 h,the optimal combinations of hardness 110-117(HV) and electrical conductivity 40.6-37.7 S/m are available respectively.
文摘The vacuum brazing of TiAl based alloy with 40Cr steel was investigated using Ag-Cu-Ti filler metal. The experimental results show that the Ag, Cu, Ti atoms in the filler metal and the base metal inter-diffuse toward each other during brazing and react at the interface to form an inter-metallic AlCu 2Ti compound which joins two parts to produce a brazing joint with higher strength.
基金supported by the National Natural Science Foundation of China(Grant No.51371139)Science and Technique Innovation Program of Shaanxi Province(Grant No.2012KTCQ01-14)+1 种基金Pivot Innovation Team of Shaanxi Electric Materials and the Infiltration Technique(Grant No.2012KCT-25)Shaanxi Provincial Project of Special Foundation of Key Disciplines
文摘The Cu Cr/1Cr18Ni9 Ti bi-metal materials were prepared by the solid-liquid bonding method. The microstructures, mechanical properties and formation mechanism of the bonding interface were studied. The results show that there exists a serrated transition layer with a certain width at the interface of Cu Cr/1Cr18Ni9 Ti bi-metal materials, and the transition layer consists of Fe-based and Cu-based solid solutions. The elastic modulus and hardness reach the maximum values at the interface closing to the 1Cr18Ni9 Ti zone. The bonding temperature has a significant effect on the width and morphology of the transition layer. The interfacial bonding strength is at least 30% higher than that of the Cu Cr alloy, and the tensile fracture occurs at the side of the Cu Cr alloy rather than at the bonding interface.