Although Cu2ZnSn(Sx,Se1-x)4(CZTSSe)is a promising candidate for thin-film photovoltaics,its cell performance is currently limited by the large voltage loss.Although a series of studies on the efficiency loss mechanism...Although Cu2ZnSn(Sx,Se1-x)4(CZTSSe)is a promising candidate for thin-film photovoltaics,its cell performance is currently limited by the large voltage loss.Although a series of studies on the efficiency loss mechanism of CZTSSe solar cell have been carried out in the past few years,no convincing understanding has been obtained until now.In this review,the current findings regarding the underlying mechanism of the efficiency loss in CZTSSe solar cells are systematically summarized and analyzed.The properties of atomic disorder and deep defects in CZTSSe materials and their effects on device performance are discussed.The synergistic effect is proposed to help understand the defect-related charge loss in the absorber.Furthermore,the experimental methods of defect identification and defect control are presented,in an attempt to identify the killer defects that can be responsible for the ultra-short minority lifetime of CZTSSe material.By comprehensively and dialectically understanding these defect properties of the CZTSSe solar cell,we believe breakthrough in the cell efficiency will come soon with our concentrated effort.展开更多
Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S,Se)4(CZTSSe)solar cells.The key is to find an appropriate molecular agent to prepare a s...Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S,Se)4(CZTSSe)solar cells.The key is to find an appropriate molecular agent to prepare a stable solution and optimize the coordination structure to facilitate the subsequent crystallization process.Herein,we introduce thioglycolic acid(TGA),which possesses strong coordination(SH)and hydrophilic(COOH)groups,as the agent and use deprotonation to regulate the coordination competition within the aqueous solution.Ultimately,metal cations are adequately coordinated with thiolate anions,and carboxylate anions are released to become hydrated to form an ultrastable aqueous solution.These factors have contributed to achieving CZTSSe solar cells with an efficiency as high as 12.3%(a certified efficiency of 12.0%)and providing an extremely wide time window for precursor storage and usage.This work represents significant progress in the non-toxic solution fabrication of CZTSSe solar cells and holds great potential for the development of CZTSSe and other metal sulfide solar cells.展开更多
Zn(O,S)film is widely used as a Cd-free buffer layer for kesterite thin film solar cells due to its low-cost and eco-friendly characteristics.However,the low carrier concentration and conductivity of Zn(O,S)will deter...Zn(O,S)film is widely used as a Cd-free buffer layer for kesterite thin film solar cells due to its low-cost and eco-friendly characteristics.However,the low carrier concentration and conductivity of Zn(O,S)will deteriorate the device performance.In this work,an additional buffer layer of In2S3 is introduced to modify the properties of the Zn(O,S)layer as well as the CZTSSe layer via a post-annealing treatment.The carrier concentrations of both the Zn(O,S)and CZTSSe layers are increased,which facilitates the carrier separation and increases the open circuit voltage(VOC).It is also found that ammonia etching treatment can remove the contamination and reduce the interface defects,and there is an increase of the surface roughness of the In2S3 layer,which works as an antireflection layer.Consequently,the efficiency of the CZTSSe solar cells is improved by 24%after the annealing and etching treatments.Simulation and experimental results show that a large band offset of the In2S3 layer and defect energy levels in the Zn(O,S)layer are the main properties limiting the fill factor and efficiency of these CZTSSe devices.This study affords a new perspective for the carrier concentration enhancement of the absorber and buffer layers by In-doping,and it also indicates that In2S3/Zn(O,S)is a promising Cd-free hybrid buffer layer for high-efficiency kesterite solar cells.展开更多
The use of transparent conducting oxide(TCO)as a substrate in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin-film solar cells allows for advanced applications,such as bifacial,semitransparent,and tandem solar cells with the capabil...The use of transparent conducting oxide(TCO)as a substrate in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin-film solar cells allows for advanced applications,such as bifacial,semitransparent,and tandem solar cells with the capability to increase power density generation.However,the efficiency of this kind of solar cell is still below 6% based on the low-cost solution process.In this work,we develop a composition gradient strategy and demonstrate a 6.82% efficient CZTSSe solar cell on F:SnO_(2)(FTO)substrate under the ambient condition.The composition gradient is realized by simply depositing the precursor inks with different Zn/Sn ratios.To verify that the high performance of the solar cell is attributed to the composition gradient strategy rather than the sole change of the Zn/Sn ratio,devices based on absorbers with varied Zn/Sn ratios are fabricated.Furthermore,the structure and surface morphology of the CZTSSe films with/without composition gradients are examined.The presence of elemental gradient through the depth of the CZTSSe films before and after annealing is confirmed by secondary ion mass spectroscopy analysis.It is found that the composition gradient enhances the crystallinity of the absorber,reduces the surface roughness as well as device parasitic losses,contributing to a higher fill factor,open-circuit voltage,and conversion efficiency.展开更多
基金supported by the National Natural Science Foundation of China(51961165108,51421002,51972332 and 51627803)。
文摘Although Cu2ZnSn(Sx,Se1-x)4(CZTSSe)is a promising candidate for thin-film photovoltaics,its cell performance is currently limited by the large voltage loss.Although a series of studies on the efficiency loss mechanism of CZTSSe solar cell have been carried out in the past few years,no convincing understanding has been obtained until now.In this review,the current findings regarding the underlying mechanism of the efficiency loss in CZTSSe solar cells are systematically summarized and analyzed.The properties of atomic disorder and deep defects in CZTSSe materials and their effects on device performance are discussed.The synergistic effect is proposed to help understand the defect-related charge loss in the absorber.Furthermore,the experimental methods of defect identification and defect control are presented,in an attempt to identify the killer defects that can be responsible for the ultra-short minority lifetime of CZTSSe material.By comprehensively and dialectically understanding these defect properties of the CZTSSe solar cell,we believe breakthrough in the cell efficiency will come soon with our concentrated effort.
基金supported by the National Natural Science Foundation of China(51961165108,51421002,51972332 and 51627803)。
文摘Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S,Se)4(CZTSSe)solar cells.The key is to find an appropriate molecular agent to prepare a stable solution and optimize the coordination structure to facilitate the subsequent crystallization process.Herein,we introduce thioglycolic acid(TGA),which possesses strong coordination(SH)and hydrophilic(COOH)groups,as the agent and use deprotonation to regulate the coordination competition within the aqueous solution.Ultimately,metal cations are adequately coordinated with thiolate anions,and carboxylate anions are released to become hydrated to form an ultrastable aqueous solution.These factors have contributed to achieving CZTSSe solar cells with an efficiency as high as 12.3%(a certified efficiency of 12.0%)and providing an extremely wide time window for precursor storage and usage.This work represents significant progress in the non-toxic solution fabrication of CZTSSe solar cells and holds great potential for the development of CZTSSe and other metal sulfide solar cells.
基金the National Key R&D Program of China(2019YFB1503500,2018YFE0203400 and2018YFB1500200)the National Natural Science Foundation of China(U1902218 and 11774187)the 111 Project(B16027)。
文摘Zn(O,S)film is widely used as a Cd-free buffer layer for kesterite thin film solar cells due to its low-cost and eco-friendly characteristics.However,the low carrier concentration and conductivity of Zn(O,S)will deteriorate the device performance.In this work,an additional buffer layer of In2S3 is introduced to modify the properties of the Zn(O,S)layer as well as the CZTSSe layer via a post-annealing treatment.The carrier concentrations of both the Zn(O,S)and CZTSSe layers are increased,which facilitates the carrier separation and increases the open circuit voltage(VOC).It is also found that ammonia etching treatment can remove the contamination and reduce the interface defects,and there is an increase of the surface roughness of the In2S3 layer,which works as an antireflection layer.Consequently,the efficiency of the CZTSSe solar cells is improved by 24%after the annealing and etching treatments.Simulation and experimental results show that a large band offset of the In2S3 layer and defect energy levels in the Zn(O,S)layer are the main properties limiting the fill factor and efficiency of these CZTSSe devices.This study affords a new perspective for the carrier concentration enhancement of the absorber and buffer layers by In-doping,and it also indicates that In2S3/Zn(O,S)is a promising Cd-free hybrid buffer layer for high-efficiency kesterite solar cells.
基金supported by the National Natural Science Foundation of China(62074168)the Fundamental Research Foundations for the Central Universities(20lgpy04)。
文摘The use of transparent conducting oxide(TCO)as a substrate in Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin-film solar cells allows for advanced applications,such as bifacial,semitransparent,and tandem solar cells with the capability to increase power density generation.However,the efficiency of this kind of solar cell is still below 6% based on the low-cost solution process.In this work,we develop a composition gradient strategy and demonstrate a 6.82% efficient CZTSSe solar cell on F:SnO_(2)(FTO)substrate under the ambient condition.The composition gradient is realized by simply depositing the precursor inks with different Zn/Sn ratios.To verify that the high performance of the solar cell is attributed to the composition gradient strategy rather than the sole change of the Zn/Sn ratio,devices based on absorbers with varied Zn/Sn ratios are fabricated.Furthermore,the structure and surface morphology of the CZTSSe films with/without composition gradients are examined.The presence of elemental gradient through the depth of the CZTSSe films before and after annealing is confirmed by secondary ion mass spectroscopy analysis.It is found that the composition gradient enhances the crystallinity of the absorber,reduces the surface roughness as well as device parasitic losses,contributing to a higher fill factor,open-circuit voltage,and conversion efficiency.