An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula...An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.展开更多
The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A la...The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A laboratory experiment was performed to study the effects of combined pollution of Cu, Ph, Zn and Cd on soil K status as indicated by chemical fractions, adsorption-desorption and quantity/intensity (Q/I) relationship of K in a Typic Udic Ferrisol (generally called red soil), by employing uniform design and single factor design. Compared to the control, content of exchangeable K was decreased, but that of soluble K increased in the samples contaminated with heavy metals. Due to heavy metal pollution, potassium adsorption was reduced by 5% to 22%, whereas the desorption percentage of adsorbed K increased by 2% to 32%. The Q/I curves shifted downward, potassium buffering capacity (PBCK) decreased, and equilibrium activity ratio values (ARoK) increased with increasing heavy metal pollution. These influences followed the sequences of Ph>Cu>Zn and combined pollution>single one. Displacement of K from canon exchange sites and decrease in soil CEC due to heavy metals should be responsible for the changes of soil K behaviours. The findings suggest that heavy metal pollution of soil might aggravate the degradation of soil K fertility by decreasing K adsorption and buffering capacity and increasing desorption.展开更多
A study was conducted to examine the effect of heavy metals (Cu,Pb, Zn and Cd in combination or alone) on the equilibrium andkinetics of phosphorus (P) retention in typic udic ferrisols by usingboth equilibrium and fl...A study was conducted to examine the effect of heavy metals (Cu,Pb, Zn and Cd in combination or alone) on the equilibrium andkinetics of phosphorus (P) retention in typic udic ferrisols by usingboth equilibrium and flow techniques. Fourteen soil samples withvarying artificial contamination of Cu, Pb, Zn and Cd were prepared.Heavy metal pollution led to increases in retention capacity andmaximum buffering capacity (MBC) of soil P. The rate of P retentionwas also increased and the time to reach equilibrium was advanced byheavy metals addition.展开更多
An extensive soil investigation was conducted in different domains of Changchun to disclose the fractionations of Pb, Cu, Cd, Zn and Ni in urban soils. Meanwhile correlation analysis and multiple stepwise regressions ...An extensive soil investigation was conducted in different domains of Changchun to disclose the fractionations of Pb, Cu, Cd, Zn and Ni in urban soils. Meanwhile correlation analysis and multiple stepwise regressions were used to define relationships between soil properties and metal fractions and the chief factors influencing the fractionation of heavy metals in the soils. The results showed that Pb, Ni and Cu were mainly associated with the residual and organic forms; most of Cd was concentrated in the residual and exchangeable fractions. Zn in residual and carbonate fraction was the highest. The activities of the heavy metals probably declined in the following order: Cd, Zn, Pb, Cu and Ni. The chemical fractions of heavy metals in different domains in Changchun City were of significantly spatial heterogeneity. Soil properties had different influences on the chemical fractions of heavy metals to some extent and the main factors influencing Cd, Zn, Pb, Cu and Ni fractionation and transformation were apparently different.展开更多
Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. T...Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. The results showed that the concentrations of soluble Zn in surface runoff were significantly negatively correlated with the contents of <0.002 mm particles and CEC of the soils, indicating that Zn was mostly adsorbed by clays in the soils. The contents of Cu and Hg in surface runoff were positively related to their contents in the soils. The amounts of Cu, Zn, Pb and Hg removed by surface runoff were influenced by the amounts of soil and water losses and their contents in the soils, and were closely related to the contents of soil particles 1-0.02 mm in size.展开更多
This paper reports the absorption, accumulation, distribution and cycle of Cu, Pb, Zn, Cr and Ni in S. apetala + S. caseolaris, mangrove community at Futian Mangrove Nature Reserve of Shenzhen. The Cu, Pb, Zn, Cr and...This paper reports the absorption, accumulation, distribution and cycle of Cu, Pb, Zn, Cr and Ni in S. apetala + S. caseolaris, mangrove community at Futian Mangrove Nature Reserve of Shenzhen. The Cu, Pb, Zn, Cr and Ni contents in forest soil increase from bottom to surface layers, and the storage of the five heavy metals in the surface layer (depth 0 ~ 30 cm) is Zn > Pb > Ni > Cr > Cu. The concentration ability is S. caseolaris > S. apetala > K. candel. The existing accumulation of Cu, Pb, Zn, Cr and Ni in the community μis 23 019.63g/m2μ, 23 429.66g/m2μ, 117 870.42g/m2μ, 6 835.80g/m2μ, and 12 995.22g/m2μ, respectively. The annual absorption is 6 592.57g/m2μ, 2 664.80g/m2μ, 23 123.56g/m2μ, 853.24g/m2μ, and 1 990.95g/m2, respectively. The annual return is μ3 179.50g/m2μ, 1 300.65g/m2μ, 7 401.31g/m2μ, 398.99g/m2μ, and 646.20g/m2, respectively. The annual net retention accumulation of Cu, Pb, Zn, Cr and Ni in the community is 3 413.07μg/m2, 1 364.15μ g/m2, 15 722.25μg/m2, 454.25μg/m2, and μ1 344.75g/m2, respectively. The turn over periods of Cu, Pb, Zn, Cr and Ni are 8,19,15,18 and 21 years, respectively.展开更多
Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficienc...Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.展开更多
The five chemical associations of heavy metals have been extracted continuously using the Tessier extracting method. Results show that Cu, Pb, Fe, Zn and Cr in the sediments are mainly distributed in residual fraction...The five chemical associations of heavy metals have been extracted continuously using the Tessier extracting method. Results show that Cu, Pb, Fe, Zn and Cr in the sediments are mainly distributed in residual fraction, while the major chemical association of Mn is carbonates. Carbonate heavy metals are converted into Fe-Mn oxides in autumn. And in the low tidal flat, after carbonates have changed into ionic heavy metals, some of the elements are transported to the overlying water. Cu, Pb, Fe and Mn have good correlations with each other, and Zn, Cr also show their similarity of chemical behavior in the sediments.展开更多
ABSTRACT The geologic features indicative of Cu, Pb, Zn mineral deposits in a area are fractures (structure), and host rock sediments. Datasets used include Cu, Pb, Zn deposit points record, geological data, remote ...ABSTRACT The geologic features indicative of Cu, Pb, Zn mineral deposits in a area are fractures (structure), and host rock sediments. Datasets used include Cu, Pb, Zn deposit points record, geological data, remote sensing imagery (Landsat TM5). The mineral potential of the study area is assessed by means of GIS based geodata integration techniques for generating predictive maps. GIS predictive model for Cu, Pb, Zn potential was carried out in this study area (Weixi) using weight of evidence. The weights of evidence modeling techniques is the data driven method in which the spatial associations of the indicative geologic features with the known mineral occurrences in the area are quantified, and weights statistically assigned to the geologic features. The best predictive map generated by this method defines 24 % the area having potential for Cu, Pb, Zn mineralization further exploration work.展开更多
In Argentina, at Central Andes Eastside, Cumbres Calchaquies, Aconquija Range and Ambato Block constitute a mountain chain that erects about 5,000 masl. Its geological story reveals morphotectonic and magmatic process...In Argentina, at Central Andes Eastside, Cumbres Calchaquies, Aconquija Range and Ambato Block constitute a mountain chain that erects about 5,000 masl. Its geological story reveals morphotectonic and magmatic processes are similar to the Pampean Ranges at which they belong to, giving origin to mineralized areas. Geochemical concentrations of trace metals (Cu, Pb, Zn, Mn, Mo, As) in stream sediments are related to the geology and mineral manifestations of the area. Geochemical high average concentration of Cu, Pb and Mo are observed in all ranges. It highlights the presence of As in Cumbres Calchaquies-Aconquija Range and Zn, Mn in the mountains of Aconquija Range-Ambato Block. It was determined that Cu-Zn-Mn complex is adsorbed or precipitated most frequently by Mn oxides. Complex Pb-Zn, Mn-As, Mo-As and Pb-Mo are absorbed by other agents (clay; oxides of Mn, Fe, AI; organic matter).展开更多
In order to clarify the role of organic matter in the enrichment of base metal, 10 samples of the Permian Kupferschiefer from southwestern Poland were analyzed by using microscopic and geochemical methods. The results...In order to clarify the role of organic matter in the enrichment of base metal, 10 samples of the Permian Kupferschiefer from southwestern Poland were analyzed by using microscopic and geochemical methods. The results indicate that the solvent extracts have been depleted in the samples with high Cu, Pb, Zn contents. This depletion occurred preferably in saturated hydrocarbons. Saturated hydrocarbons served as hydrogen donor for thermochemical sulfate reduction (TSR). The GC traces of saturated hydrocarbon show that the depletion occurred mainly in long chain n alkanes.展开更多
The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range have distinctly different mineralogical and geochemical signatures. The Cu-Pb-Zn-bearing granites are dominated by metaluminous amp...The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range have distinctly different mineralogical and geochemical signatures. The Cu-Pb-Zn-bearing granites are dominated by metaluminous amphibole-bearing granodiorites, which have higher CaO/(Na2O+K2O) ratios, light/heavy rare earth element(LREE/HREE) ratios, and δEu values,lower Rb/Sr ratios, and weak Ba, Sr, P, and Ti depletions, exhibiting low degrees of fractionation. The W-bearing granites are highly differentiated and peraluminous, and they have lower CaO/(Na2O+K2O) ratios, LREE/HREE ratios, and δEu values,higher Rb/Sr ratios, and strong Ba, Sr, P, and Ti depletions. The Cu-Pb-Zn-bearing granites were formed predominantly between155.2 and 167.0 Ma with a peak value of 160.6 Ma, whereas the W-bearing granites were formed mainly from 151.1 to 161.8Ma with a peak value of 155.5 Ma. There is a time gap of about 5 Ma between the two different types of ore-bearing granites.Based on detailed geochronological and geochemical studies of both the Tongshanling Cu-Pb-Zn-bearing and Weijia W-bearing granites in southern Hunan Province and combined with the other Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, a genetic model of the two different types of ore-bearing granites has been proposed. Asthenosphere upwelling and basaltic magma underplating were induced by the subduction of the palaeo-Pacific plate. The underplated basaltic magmas provided heat to cause a partial melting of the mafic amphibolitic basement in the lower crust, resulting in the formation of Cu-Pb-Zn mineralization related granodioritic magmas. With the development of basaltic magma underplating,the muscovite-rich metasedimentary basement in the upper-middle crust was partially melted to generate W-bearing granitic magmas. The compositional difference of granite sources accounted for the metallogenic specialization, and the non-simultaneous partial melting of one source followed by the other brought about a time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granites.展开更多
基金supported by the Fundamental Research Funds for Central Universities,China(No.N2025004)the National Natural Science Foundation of China(Nos.U2102213,U1702253,52204419)+2 种基金Major Science and Technology Project of Liaoning Province,China(No.2021JH1/10400032)Major Science and Technology Project of Guangxi Province,China(No.2021AA12013)Liaoning Natural Science Foundation,China(No.2022-BS-076)。
文摘An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.
基金Project supported by the National Natural Science Foundation of China (Nos. 49631010 and 49771048),China Postdoctor Science Foun
文摘The indirect influence of heavy metal contamination of soil on nutrient availability, an important aspect of soil quality, may need to be taken into consideration when determining overall effects of heavy metals. A laboratory experiment was performed to study the effects of combined pollution of Cu, Ph, Zn and Cd on soil K status as indicated by chemical fractions, adsorption-desorption and quantity/intensity (Q/I) relationship of K in a Typic Udic Ferrisol (generally called red soil), by employing uniform design and single factor design. Compared to the control, content of exchangeable K was decreased, but that of soluble K increased in the samples contaminated with heavy metals. Due to heavy metal pollution, potassium adsorption was reduced by 5% to 22%, whereas the desorption percentage of adsorbed K increased by 2% to 32%. The Q/I curves shifted downward, potassium buffering capacity (PBCK) decreased, and equilibrium activity ratio values (ARoK) increased with increasing heavy metal pollution. These influences followed the sequences of Ph>Cu>Zn and combined pollution>single one. Displacement of K from canon exchange sites and decrease in soil CEC due to heavy metals should be responsible for the changes of soil K behaviours. The findings suggest that heavy metal pollution of soil might aggravate the degradation of soil K fertility by decreasing K adsorption and buffering capacity and increasing desorption.
基金Project jointly supported by the National Natural Science Foundation of China (No. 49771048) and theLaboratory of Material Cyc
文摘A study was conducted to examine the effect of heavy metals (Cu,Pb, Zn and Cd in combination or alone) on the equilibrium andkinetics of phosphorus (P) retention in typic udic ferrisols by usingboth equilibrium and flow techniques. Fourteen soil samples withvarying artificial contamination of Cu, Pb, Zn and Cd were prepared.Heavy metal pollution led to increases in retention capacity andmaximum buffering capacity (MBC) of soil P. The rate of P retentionwas also increased and the time to reach equilibrium was advanced byheavy metals addition.
文摘An extensive soil investigation was conducted in different domains of Changchun to disclose the fractionations of Pb, Cu, Cd, Zn and Ni in urban soils. Meanwhile correlation analysis and multiple stepwise regressions were used to define relationships between soil properties and metal fractions and the chief factors influencing the fractionation of heavy metals in the soils. The results showed that Pb, Ni and Cu were mainly associated with the residual and organic forms; most of Cd was concentrated in the residual and exchangeable fractions. Zn in residual and carbonate fraction was the highest. The activities of the heavy metals probably declined in the following order: Cd, Zn, Pb, Cu and Ni. The chemical fractions of heavy metals in different domains in Changchun City were of significantly spatial heterogeneity. Soil properties had different influences on the chemical fractions of heavy metals to some extent and the main factors influencing Cd, Zn, Pb, Cu and Ni fractionation and transformation were apparently different.
基金Project (No. 1999[95]) supported by the Education Ministry of China.
文摘Cu, Zn, Pb and Hg runoff from yellow limestone soil and purple soils and the relationships between the mobility of the heavy metals and the soil characteristics were studied in laboratory using a rainfall simulator. The results showed that the concentrations of soluble Zn in surface runoff were significantly negatively correlated with the contents of <0.002 mm particles and CEC of the soils, indicating that Zn was mostly adsorbed by clays in the soils. The contents of Cu and Hg in surface runoff were positively related to their contents in the soils. The amounts of Cu, Zn, Pb and Hg removed by surface runoff were influenced by the amounts of soil and water losses and their contents in the soils, and were closely related to the contents of soil particles 1-0.02 mm in size.
文摘This paper reports the absorption, accumulation, distribution and cycle of Cu, Pb, Zn, Cr and Ni in S. apetala + S. caseolaris, mangrove community at Futian Mangrove Nature Reserve of Shenzhen. The Cu, Pb, Zn, Cr and Ni contents in forest soil increase from bottom to surface layers, and the storage of the five heavy metals in the surface layer (depth 0 ~ 30 cm) is Zn > Pb > Ni > Cr > Cu. The concentration ability is S. caseolaris > S. apetala > K. candel. The existing accumulation of Cu, Pb, Zn, Cr and Ni in the community μis 23 019.63g/m2μ, 23 429.66g/m2μ, 117 870.42g/m2μ, 6 835.80g/m2μ, and 12 995.22g/m2μ, respectively. The annual absorption is 6 592.57g/m2μ, 2 664.80g/m2μ, 23 123.56g/m2μ, 853.24g/m2μ, and 1 990.95g/m2, respectively. The annual return is μ3 179.50g/m2μ, 1 300.65g/m2μ, 7 401.31g/m2μ, 398.99g/m2μ, and 646.20g/m2, respectively. The annual net retention accumulation of Cu, Pb, Zn, Cr and Ni in the community is 3 413.07μg/m2, 1 364.15μ g/m2, 15 722.25μg/m2, 454.25μg/m2, and μ1 344.75g/m2, respectively. The turn over periods of Cu, Pb, Zn, Cr and Ni are 8,19,15,18 and 21 years, respectively.
基金Project(K1201010-61)supported by the Science and Technology Program of Changsha,ChinaProject(51074191)supported by the National Natural Science Foundation of ChinaProject(2012BAC09B04)supported by National Key Technology Research and Development Program,China
文摘Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.
基金This work is supported by the National Natural Science Focal Projects Foundation of China(Grant No.40131020)the National Natural Science Foundation of China(Grant No.49833030)+2 种基金the Venus Program Foundation for Young Scientists of Shanghai(Grant No.97QA14023)its Tracking Program(Grant No.01QMH1406)the Dawn Program of Shanghai Ecucational Development Foundation.
文摘The five chemical associations of heavy metals have been extracted continuously using the Tessier extracting method. Results show that Cu, Pb, Fe, Zn and Cr in the sediments are mainly distributed in residual fraction, while the major chemical association of Mn is carbonates. Carbonate heavy metals are converted into Fe-Mn oxides in autumn. And in the low tidal flat, after carbonates have changed into ionic heavy metals, some of the elements are transported to the overlying water. Cu, Pb, Fe and Mn have good correlations with each other, and Zn, Cr also show their similarity of chemical behavior in the sediments.
文摘ABSTRACT The geologic features indicative of Cu, Pb, Zn mineral deposits in a area are fractures (structure), and host rock sediments. Datasets used include Cu, Pb, Zn deposit points record, geological data, remote sensing imagery (Landsat TM5). The mineral potential of the study area is assessed by means of GIS based geodata integration techniques for generating predictive maps. GIS predictive model for Cu, Pb, Zn potential was carried out in this study area (Weixi) using weight of evidence. The weights of evidence modeling techniques is the data driven method in which the spatial associations of the indicative geologic features with the known mineral occurrences in the area are quantified, and weights statistically assigned to the geologic features. The best predictive map generated by this method defines 24 % the area having potential for Cu, Pb, Zn mineralization further exploration work.
文摘In Argentina, at Central Andes Eastside, Cumbres Calchaquies, Aconquija Range and Ambato Block constitute a mountain chain that erects about 5,000 masl. Its geological story reveals morphotectonic and magmatic processes are similar to the Pampean Ranges at which they belong to, giving origin to mineralized areas. Geochemical concentrations of trace metals (Cu, Pb, Zn, Mn, Mo, As) in stream sediments are related to the geology and mineral manifestations of the area. Geochemical high average concentration of Cu, Pb and Mo are observed in all ranges. It highlights the presence of As in Cumbres Calchaquies-Aconquija Range and Zn, Mn in the mountains of Aconquija Range-Ambato Block. It was determined that Cu-Zn-Mn complex is adsorbed or precipitated most frequently by Mn oxides. Complex Pb-Zn, Mn-As, Mo-As and Pb-Mo are absorbed by other agents (clay; oxides of Mn, Fe, AI; organic matter).
文摘In order to clarify the role of organic matter in the enrichment of base metal, 10 samples of the Permian Kupferschiefer from southwestern Poland were analyzed by using microscopic and geochemical methods. The results indicate that the solvent extracts have been depleted in the samples with high Cu, Pb, Zn contents. This depletion occurred preferably in saturated hydrocarbons. Saturated hydrocarbons served as hydrogen donor for thermochemical sulfate reduction (TSR). The GC traces of saturated hydrocarbon show that the depletion occurred mainly in long chain n alkanes.
基金supported by the National Natural Science Foundation of China (Grant No. 41273053)the National Key Basic Research Program of China (Grant No. 2012CB416702)the Sino-French Cai Yuanpei Program of China Scholarship Council
文摘The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range have distinctly different mineralogical and geochemical signatures. The Cu-Pb-Zn-bearing granites are dominated by metaluminous amphibole-bearing granodiorites, which have higher CaO/(Na2O+K2O) ratios, light/heavy rare earth element(LREE/HREE) ratios, and δEu values,lower Rb/Sr ratios, and weak Ba, Sr, P, and Ti depletions, exhibiting low degrees of fractionation. The W-bearing granites are highly differentiated and peraluminous, and they have lower CaO/(Na2O+K2O) ratios, LREE/HREE ratios, and δEu values,higher Rb/Sr ratios, and strong Ba, Sr, P, and Ti depletions. The Cu-Pb-Zn-bearing granites were formed predominantly between155.2 and 167.0 Ma with a peak value of 160.6 Ma, whereas the W-bearing granites were formed mainly from 151.1 to 161.8Ma with a peak value of 155.5 Ma. There is a time gap of about 5 Ma between the two different types of ore-bearing granites.Based on detailed geochronological and geochemical studies of both the Tongshanling Cu-Pb-Zn-bearing and Weijia W-bearing granites in southern Hunan Province and combined with the other Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, a genetic model of the two different types of ore-bearing granites has been proposed. Asthenosphere upwelling and basaltic magma underplating were induced by the subduction of the palaeo-Pacific plate. The underplated basaltic magmas provided heat to cause a partial melting of the mafic amphibolitic basement in the lower crust, resulting in the formation of Cu-Pb-Zn mineralization related granodioritic magmas. With the development of basaltic magma underplating,the muscovite-rich metasedimentary basement in the upper-middle crust was partially melted to generate W-bearing granitic magmas. The compositional difference of granite sources accounted for the metallogenic specialization, and the non-simultaneous partial melting of one source followed by the other brought about a time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granites.