The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-pre...The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.展开更多
The hierarchical micro/nanoscale layered formation of organic and inorganic components of natural nacre, results in abundant interracial interactions, providing an inspiration for fabricating bioinspired nanocomposite...The hierarchical micro/nanoscale layered formation of organic and inorganic components of natural nacre, results in abundant interracial interactions, providing an inspiration for fabricating bioinspired nanocomposites through constructing the interfacial interactions. Herein, we demonstrated the synergistic interfacial interactions of hydrogen bonding from hydroxypropyl cellu- lose and ionic bonding from copper ions upon the reduced graphene oxide based bioinspired nanocomposites, which show the integrated tensile strength, toughness and excellent fatigue-resistant property, as well as high electrical conductivity. These ex- traordinary properties allow this kind of bioinspired nanocomposites to potentially utilize in the fields of aerospace, flexible electronics devices, etc. This study also opens a door for fabricating excellent mechanical performance graphene-based bioin- spired nanocomposites via synergistic interfacial interactions in the future.展开更多
基金Project(51174229) supported by the National Natural Science Foundation of China
文摘The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.
基金supported by the Excellent Young Scientist Foundation of NSFC(Grant No.51522301)the National Natural Science Foundation of China(Grant Nos.21273017&51103004)+7 种基金Program for New Century Excellent Talents in University(Grant No.NCET-12-0034)Beijing Nova Program(Grant No.Z121103002512020)Fok Ying-Tong Education Foundation(Grant No.141045)Open Project of Beijing National Laboratory for Molecular Sciences,the 111 Project(Grant No.B14009)Aeronautical Science Foundation of China(Grant Nos.20145251035&2015ZF21009)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(Grant No.LK1508)the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-M03)the Fundamental Research Funds for the Central Universities(Grant Nos.YWF-15-HHXY-001&YWF-16-BJ-J-09)
文摘The hierarchical micro/nanoscale layered formation of organic and inorganic components of natural nacre, results in abundant interracial interactions, providing an inspiration for fabricating bioinspired nanocomposites through constructing the interfacial interactions. Herein, we demonstrated the synergistic interfacial interactions of hydrogen bonding from hydroxypropyl cellu- lose and ionic bonding from copper ions upon the reduced graphene oxide based bioinspired nanocomposites, which show the integrated tensile strength, toughness and excellent fatigue-resistant property, as well as high electrical conductivity. These ex- traordinary properties allow this kind of bioinspired nanocomposites to potentially utilize in the fields of aerospace, flexible electronics devices, etc. This study also opens a door for fabricating excellent mechanical performance graphene-based bioin- spired nanocomposites via synergistic interfacial interactions in the future.