Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in th...Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.展开更多
Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediati...Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation. This study aimed at investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by El-sholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining]. The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78 mg/kg in MS and from 0.26 to 15.72 mg/kg in PS, and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control. There was no significant difference between the treatment with 5.0 mmol/kg EDTA and that with 2.5 mmol/kg EDTA, probably because that 2.5 mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level. As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E. splendens in polluted soils.展开更多
基金Projects(51304251,51504299)supported by the National Natural Science Foundation of ChinaProject(201509050)+1 种基金supported by Special Program on Environmental Protection for Public Welfare,ChinaProject(k1502037-31)supported by Key Project of Changsha,China
文摘Copper and arsenic in acidic wastewater were separated by cascade sulfidation followed by replacement of arsenic in theprecipitates by copper in the solution which was realized by recycling precipitates obtained in the first stage into the initial solution.The effects of reaction time,temperature and H2S dosage on copper and arsenic removal efficiencies as well as the effects of solid-toliquidratio,time and temperature on the replacement of arsenic by copper were investigated.With20mmol/L H2S at50°C within0.5min,more than80%copper and nearly20%arsenic were precipitated.The separation efficiencies of copper and arsenic werehigher than99%by the replacement reaction between arsenic and copper ions when solid-to-liquid ratio was more than10%at20°Cwithin10min.CuS was the main phases in precipitate in which copper content was63.38%in mass fraction.
文摘Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation. This study aimed at investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by El-sholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining]. The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78 mg/kg in MS and from 0.26 to 15.72 mg/kg in PS, and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control. There was no significant difference between the treatment with 5.0 mmol/kg EDTA and that with 2.5 mmol/kg EDTA, probably because that 2.5 mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level. As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E. splendens in polluted soils.