The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be ...The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.展开更多
The effects of surface cleaning to eliminate the surface oxides formed on Cu seed layer with dilute H2SO4 solution were investigated. Cu seed layer formed on Ti/Si(100) wafer by sputter deposition was exposed to air...The effects of surface cleaning to eliminate the surface oxides formed on Cu seed layer with dilute H2SO4 solution were investigated. Cu seed layer formed on Ti/Si(100) wafer by sputter deposition was exposed to air to grow native Cu oxide. Dilute H2SO4 solutions and/or TS-40A alkaline soak cleaner were used to remove the native Cu-oxide. After mainly carbon groups (such as C=O) on surface of Cu seed layer were removed by pretreatment of TS-40A alkaline solution, subsequently, dilute H2SO4 acid solution removed Cu-oxides (Cu20 and CuO) as well as a lot of O=C and Cu(OH)2.展开更多
Photophysical processes occurring within organic semiconductors is important for designing and fabricating organic solar cells.Copper phthalocyanine(CuPc)is a typical electron acceptor.In this work,the triplet exciton...Photophysical processes occurring within organic semiconductors is important for designing and fabricating organic solar cells.Copper phthalocyanine(CuPc)is a typical electron acceptor.In this work,the triplet exciton lifetime is prolonged by altering the molecular stacking pattern of the CuPc film.For CuPc thin films,the excited state decays are mainly determined by the triplet-triplet annihilation process.The ultrafast transient absorption measurements indicate that the primary annihilation mechanism is one-dimensional exciton diffusion collision destruction.The decay kinetics show a clearly time-dependent annihilation rate constant withγ∝t^(-1/2).Annihilation rate constants are determined to beγ0=(2.87±0.02)×10^(-20)cm^(3)·s^(-1/2)and(1.42±0.02)×10^(-20)cm^(3)·s^(-1/2)for upright and lyingdown configurations,respectively.Compared to the CuPc thin film with an upright configuration,the thin film with a lying-down configuration shows longer exciton lifetime and higher absorbance,which are beneficial to organic solar cells.The results in this work have important implications on the design and mechanistic understanding of organic optoelectronic devices.展开更多
The mechanism of leaching chalcopyrite by Acidithiobacillus ferrooxidans (,4. ferrooxidans) in agar-simulated extracellular polymeric substances (EPS) media was investigated. The results indicate that bacterial EP...The mechanism of leaching chalcopyrite by Acidithiobacillus ferrooxidans (,4. ferrooxidans) in agar-simulated extracellular polymeric substances (EPS) media was investigated. The results indicate that bacterial EPS can release H+ and concentrate Fe3+; Fe2+ is movable between agar-simulated EPS phase and bulk solution phase, but it is difficult for Fe3+ to move due to its hydroxylation and EPS complex action; A. ferrooxidans first prefer Fe2+ as energy to metabolize compared with chalcopyrite, and a suitable simulated EPS environment for bacterial living is at about pH 1.8; the iron precipitates and jarosites formed by a lot of biologically oxidized Fe3 cover the simulated EPS easily and form an impermeable deposit acting as a limited barrier of ion transport that attenuates the aggressiveness of the bioleaching attack. The EPS layer blocked by iron precipitates or jarosites is responsible for the chalcopyrite passivation.展开更多
Nano particles are finding their way into the environment through deliberate and accidental actions, ecotoxicological properties and the risks of these nano particles have yet not been fully characterized. In this pre...Nano particles are finding their way into the environment through deliberate and accidental actions, ecotoxicological properties and the risks of these nano particles have yet not been fully characterized. In this present investigation, experiments were carried out to know the effect of Cu oxide-nano particles (〈 50 nm) on germination and growth of seeds of soybean and chickpea. In both the crops, germination was not checked up to 2,000 ppm Cu (applied through Cu oxide-nano particles), but the root growth was prevented above 500 ppm Cu. With increasing concentration of NPs, the elongation of the roots was severely inhibited as compared to that in control. In many cases root necrosis was occurred. Massive adsorption of Cu oxide-nano particles into the root system was responsible for the toxicity. A parallel experiment was also carried out to know the effect of copper sulphate solution on seed germination, above 200 ppm Cu, it restricted the germination of seeds, because of high salinity.展开更多
The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations an...The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.展开更多
The GIS (geographic information system) used for predicting the associated with upper-intrusive zone of hydrothermal alteration IOCG (iron-oxide copper gold) mineralizing systems is shown by example of the northea...The GIS (geographic information system) used for predicting the associated with upper-intrusive zone of hydrothermal alteration IOCG (iron-oxide copper gold) mineralizing systems is shown by example of the northeast of Russian. IOCG ore deposits can have enormous geological resources with significant reserves of base, precious and strategic metals, are economically attractive targets for mineral exploration worldwide, but are still unknown in the northeast Russian. It was localized in Tarinskiy ore node (eastern Yakutia) field of brecciated altered rocks with sulfide and iron-oxide cement is a first in eastern Yakutia nature anomaly of IOCG-type with iron-oxide Cu-Au ± U specialization, that was formed close to the surface of Rep-Yuruinskiy pluton. It should be of interest as a new precious metals world class deposit type in northeast of Russia.展开更多
This research described the chemical and physical characterizations of banana (Musa sapientum Linn) peel for adsorption of copper. The FT-IR spectroscopy, BET (surface area) and SEM (scanning electron microscopy...This research described the chemical and physical characterizations of banana (Musa sapientum Linn) peel for adsorption of copper. The FT-IR spectroscopy, BET (surface area) and SEM (scanning electron microscopy) coupled with EDX (energy dispersive X-ray) analysis were used for characterizations, while copper concentration was determined by ICP spectroscopy. The different parameters: pH values 3.0 to 9.0, banana dose (0.1 g to 0.7 g) and adsorption times (30 min to 180 min) were investigated for studying an adsorption efficient. It was found that banana peel (0.1 g) was a bio-adsorbent for copper adsorption under the suitable conditions at pH 7.0 and 90 min adsorption time. The sorption pattern was additionally found to be in linear form, according to the Freundlich and Langmuir equations with R2 = 0.966 and 0.994, respectively.展开更多
A series of catalysts on the basis of 10 wt.% CuO/y-AI203, 10 wt.% CuO + 10 wt.% Cr2O3/y-AI203 and 15 wt.% MnO2/y -A1203 have been prepared and modified by CeO2 with contents up to 20 wt.%. Physico-chemical propertie...A series of catalysts on the basis of 10 wt.% CuO/y-AI203, 10 wt.% CuO + 10 wt.% Cr2O3/y-AI203 and 15 wt.% MnO2/y -A1203 have been prepared and modified by CeO2 with contents up to 20 wt.%. Physico-chemical properties of the catalysts were determined by the methods of BET Adsorption, XRD, and TPR. Oxidative activity of the catalysts was studied at the temperature range 90-220 ℃and CO concentration of 3 mol.%. Addition of CeO2 led to changes in physico-chemical properties of the catalysts and formation of novel active centres that increased the activity of CuO and Cr203 containing catalysts, but decreased the activity of those, containing MnO2. The catalyst sample containing 10 wt.% CuO and 15 wt.% CeO2 has been shown to be the best one for complete conversion of CO. At the given conditions on this catalyst the complete oxidation of CO to CO2 occurred at 130 ~C during more than 500 h.展开更多
The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly co...The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.展开更多
Mine tailing soils created from the copper extraction in Touro Mine (Northwest Spain) are very degraded both physically and chemically. Three plots in this mine tailing were amended with Technosols in different prop...Mine tailing soils created from the copper extraction in Touro Mine (Northwest Spain) are very degraded both physically and chemically. Three plots in this mine tailing were amended with Technosols in different proportions in each one to know if this mixture improved the physico-chemical characteristics of the mine soil and contaminated it with heavy metals. The Technosols were made of organic wastes, including mussel residues, wood fragments, sewage sludges and paper mill ashes. An unamended area was used as a control soil. Pseudototal and diethylenetriaminepentaacetic acid (DTPA)-extractable contents of A1, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in soil samples. The untreated soil had significant limitations for vegetation growth. All the Technosols improved the properties of the mine soil by increasing organic carbon and pH value, but they added Ni, Pb or Zn to the soil. It is advisable to check whether the heavy metal concentrations of the wastes are hazardous or not before adding to soils. It is also necessary to study the effect of these wastes over time and in more areas to conclude if they are actually favourable to restore degraded mine soils.展开更多
The mechanism of the action of copper-dependent quercetin 2,3-dioxygenase (2,3QD) has been investigated by means of hy- brid density functional theory. The 2,3QD enzyme cleaves the O-heterocycle of a quercetin by in...The mechanism of the action of copper-dependent quercetin 2,3-dioxygenase (2,3QD) has been investigated by means of hy- brid density functional theory. The 2,3QD enzyme cleaves the O-heterocycle of a quercetin by incorporation of both oxygen atoms into the substrate and releases carbon monoxide. The calculations show that dioxygen attack on the copper complex is energetically favorable. The adduct has a possible near-degeneracy of states between [Cu2+-(substrate H+)] and [Cu+-(sub- strate-H). ], and in addition the pyramidalized C2 atom is ideally suited for forming a dioxygembridged structure. In the next step, the C3-C4 bond is cleaved and intermediate lnt5 is formed via transition state TS4. Finally, the Oa-Ob and C2-C3 bonds are cleaved, and CO is released in one concerted transition state (TS5) with the barrier of 63.25 and 61.91 k J/tool in the gas phase and protein environments, respectively. On the basis of our proposed reaction mechanism, this is the rate-limiting step of the whole catalytic cycle and is strongly driven by a relatively large exothermicity of 100.86 kJ/mol. Our work provides some valuable fundamental insights into the behavior of this enzyme.展开更多
Fe_(y)Te_(1-x)Se_(x),an archetypical iron-based high-temperature superconductor with a simple structure but rich physical properties,has attracted lots of attention because the two end compositions,Se content x=0 and ...Fe_(y)Te_(1-x)Se_(x),an archetypical iron-based high-temperature superconductor with a simple structure but rich physical properties,has attracted lots of attention because the two end compositions,Se content x=0 and 1,exhibit antiferromagnetism and nematicity,respectively,making it an ideal candidate for studying their interactions with superconductivity.However,what is clearly lacking to date is a complete phase diagram of Fe_(y)Te_(1-x)Se_(x)as functions of its chemical compositions since phase separation usually occurs from x~0.6 to 0.9 in bulk crystals.Moreover,fine control of its composition is experimentally challenging because both Te and Se are volatile elements.Here we establish a complete phase diagram of Fe_(y)Te_(1-x)Se_(x),achieved by high-throughput film synthesis and characterization techniques.An advanced combinatorial synthesis process enables us to fabricate an epitaxial composition-spread Fe_(y)Te_(1-x)Se_(x)film encompassing the entire Se content x from 0 to 1 on a single piece of CaFsubstrate.The micro-region composition analysis and X-ray diffraction show a successful continuous tuning of chemical compositions and lattice parameters,respectively.The micro-scale pattern technique allows the mapping of electrical transport properties as a function of relative Se content with an unprecedented resolution of0.0074.Combining with the spin patterns in literature,we build a detailed phase diagram that can unify the electronic and magnetic properties of Fe_(y)Te_(1-x)Se_(x).Our composition-spread Fe_(y)Te_(1-x)Se_(x) films,overcoming the challenges of phase separation and precise control of chemical compositions,provide an ideal platform for studying the relationship between superconductivity and magnetism.展开更多
Ordered mesoporous Cu-Mg-A1 composite oxides were synthesized via the one-pot evaporation-in- duced self-assembly strategy. Using this method, copper was first homogeneously incorporated into the ordered mesoporous sp...Ordered mesoporous Cu-Mg-A1 composite oxides were synthesized via the one-pot evaporation-in- duced self-assembly strategy. Using this method, copper was first homogeneously incorporated into the ordered mesoporous spinel matrix. After H2 reduction treatment, according to X-ray diffraction (XRD) and transmission electron microscopy (TEM) results, copper existed as metallic nanoparticles with the size of 6-10 nm that well decorated the parent mesoporous skeleton. The metallic nanoparticles were then re-oxidized to copper oxide when exposed to air or during CO oxidation reaction at low temperatures. Thus, copper migrated from bulk spinel phase to the surface after the reduction-oxidation treat- ment. Moreover, the copper on the surface was re-incor- porated into the bulk spinel phase by further thermal treatment at much higher temperature in the presence of air. The correlation between the state of copper in the mesoporous composite oxides and the catalytic perfor- mance toward CO oxidation was studied. It was found that copper existed as oxide nanoparticles on the surface of mesoporous Mg-Al skeleton is much more active than that existed as lattice Cu ions in spinel phase.展开更多
In this work, the nature, location and evolution of Cu+ ions in Cu-SAPO-34 are investigated by diffuse reflectance infrared Fourier transform spectrum(DRIFTS) of CO adsorption and density functional theory(DFT) calcul...In this work, the nature, location and evolution of Cu+ ions in Cu-SAPO-34 are investigated by diffuse reflectance infrared Fourier transform spectrum(DRIFTS) of CO adsorption and density functional theory(DFT) calculation. By combination with DFT results, characteristic Cu+–CO bands located at 2154 and 2136 cm.1 are attributed to CO adsorbed on Cu+ ions located at sites I(in the plane of six-membered ring connected to the large cages) and site II(in the eight-membered ring cages near the tilted four membered ring) in the framework of H-SAPO-34 zeolite. Subsequently, both the influences of Cu loading and preparation method are considered and discussed. By varying the Cu loading, the site-occupation preference of Cu+ ions on site I is confirmed,especially at low Cu loadings. Through elevating the desorption temperature, migration of Cu+ ions is revealed because of the adsorption-induced effect. Furthermore, a facile and more efficient approach to introduce Cu+ ions into CHA zeolite, compared with solid-state ion exchange with CuCl and conventional ion exchange in aqueous solution, and the different preparation methods also result in different occupations of Cu+ ions.展开更多
Metal foams with hierarchically porous structures are highly desirable in energy applications as active materials or their host substrates.However,conventional preparation methods usually have a quite limited flexibil...Metal foams with hierarchically porous structures are highly desirable in energy applications as active materials or their host substrates.However,conventional preparation methods usually have a quite limited flexibility of adjusting pore size of metal foams.Herein,an alternative new method based on gaseous thermal oxidation-nitridation-denitridation processes was developed to prepare metal(copper and nickel)foams with adjustable pore size by controlling the thermal nitridation temperature.Moreover,this environment-friendly method is independent of the shape of starting pure metal substrates and can be repeatedly applied to the metal substrates to create hierarchical porous structures containing different size pores.As a demonstration of the advantages of the resultant foams with abundant pores by this method,compared with its starting material(commercial Ni foam with the pore size of several millimeters),the resultant hierarchical porous Ni foam gives the remarkably enhanced performance of electrochemical water splitting as HER/OER electrodes and electrochemical energy storage as the host substrate of capacitive material MnO2.The metal foams with adjustable pore size prepared by the developed method will find a wide range of important applications in energy storage and conversion areas.展开更多
基金supported by the National Natural Science Foundation of China(21273086)Chutian Scholar Foundation from Hubei Province,China~~
文摘The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012026094)
文摘The effects of surface cleaning to eliminate the surface oxides formed on Cu seed layer with dilute H2SO4 solution were investigated. Cu seed layer formed on Ti/Si(100) wafer by sputter deposition was exposed to air to grow native Cu oxide. Dilute H2SO4 solutions and/or TS-40A alkaline soak cleaner were used to remove the native Cu-oxide. After mainly carbon groups (such as C=O) on surface of Cu seed layer were removed by pretreatment of TS-40A alkaline solution, subsequently, dilute H2SO4 acid solution removed Cu-oxides (Cu20 and CuO) as well as a lot of O=C and Cu(OH)2.
基金supported by the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics at Dalian Institute of Chemical Physics,Chinese Academy of Sciences(No.SKLMRD-K202108)。
文摘Photophysical processes occurring within organic semiconductors is important for designing and fabricating organic solar cells.Copper phthalocyanine(CuPc)is a typical electron acceptor.In this work,the triplet exciton lifetime is prolonged by altering the molecular stacking pattern of the CuPc film.For CuPc thin films,the excited state decays are mainly determined by the triplet-triplet annihilation process.The ultrafast transient absorption measurements indicate that the primary annihilation mechanism is one-dimensional exciton diffusion collision destruction.The decay kinetics show a clearly time-dependent annihilation rate constant withγ∝t^(-1/2).Annihilation rate constants are determined to beγ0=(2.87±0.02)×10^(-20)cm^(3)·s^(-1/2)and(1.42±0.02)×10^(-20)cm^(3)·s^(-1/2)for upright and lyingdown configurations,respectively.Compared to the CuPc thin film with an upright configuration,the thin film with a lying-down configuration shows longer exciton lifetime and higher absorbance,which are beneficial to organic solar cells.The results in this work have important implications on the design and mechanistic understanding of organic optoelectronic devices.
基金Project(2010CB630900) supported by the National Basic Research Program of ChinaProject(50621063) supported by the National Nature Science Foundation of China
文摘The mechanism of leaching chalcopyrite by Acidithiobacillus ferrooxidans (,4. ferrooxidans) in agar-simulated extracellular polymeric substances (EPS) media was investigated. The results indicate that bacterial EPS can release H+ and concentrate Fe3+; Fe2+ is movable between agar-simulated EPS phase and bulk solution phase, but it is difficult for Fe3+ to move due to its hydroxylation and EPS complex action; A. ferrooxidans first prefer Fe2+ as energy to metabolize compared with chalcopyrite, and a suitable simulated EPS environment for bacterial living is at about pH 1.8; the iron precipitates and jarosites formed by a lot of biologically oxidized Fe3 cover the simulated EPS easily and form an impermeable deposit acting as a limited barrier of ion transport that attenuates the aggressiveness of the bioleaching attack. The EPS layer blocked by iron precipitates or jarosites is responsible for the chalcopyrite passivation.
文摘Nano particles are finding their way into the environment through deliberate and accidental actions, ecotoxicological properties and the risks of these nano particles have yet not been fully characterized. In this present investigation, experiments were carried out to know the effect of Cu oxide-nano particles (〈 50 nm) on germination and growth of seeds of soybean and chickpea. In both the crops, germination was not checked up to 2,000 ppm Cu (applied through Cu oxide-nano particles), but the root growth was prevented above 500 ppm Cu. With increasing concentration of NPs, the elongation of the roots was severely inhibited as compared to that in control. In many cases root necrosis was occurred. Massive adsorption of Cu oxide-nano particles into the root system was responsible for the toxicity. A parallel experiment was also carried out to know the effect of copper sulphate solution on seed germination, above 200 ppm Cu, it restricted the germination of seeds, because of high salinity.
基金the National Key Research and Development Program of China(No.2019YFC0408303)the Natural Science Foundation of Hunan Province,China(No.2021JJ20069)+2 种基金the Changsha Science and Technology Project,China(Nos.kq2106016,kq2009005)Higher Education Discipline Innovation Project(111 Project),China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0887).
文摘The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.
文摘The GIS (geographic information system) used for predicting the associated with upper-intrusive zone of hydrothermal alteration IOCG (iron-oxide copper gold) mineralizing systems is shown by example of the northeast of Russian. IOCG ore deposits can have enormous geological resources with significant reserves of base, precious and strategic metals, are economically attractive targets for mineral exploration worldwide, but are still unknown in the northeast Russian. It was localized in Tarinskiy ore node (eastern Yakutia) field of brecciated altered rocks with sulfide and iron-oxide cement is a first in eastern Yakutia nature anomaly of IOCG-type with iron-oxide Cu-Au ± U specialization, that was formed close to the surface of Rep-Yuruinskiy pluton. It should be of interest as a new precious metals world class deposit type in northeast of Russia.
文摘This research described the chemical and physical characterizations of banana (Musa sapientum Linn) peel for adsorption of copper. The FT-IR spectroscopy, BET (surface area) and SEM (scanning electron microscopy) coupled with EDX (energy dispersive X-ray) analysis were used for characterizations, while copper concentration was determined by ICP spectroscopy. The different parameters: pH values 3.0 to 9.0, banana dose (0.1 g to 0.7 g) and adsorption times (30 min to 180 min) were investigated for studying an adsorption efficient. It was found that banana peel (0.1 g) was a bio-adsorbent for copper adsorption under the suitable conditions at pH 7.0 and 90 min adsorption time. The sorption pattern was additionally found to be in linear form, according to the Freundlich and Langmuir equations with R2 = 0.966 and 0.994, respectively.
文摘A series of catalysts on the basis of 10 wt.% CuO/y-AI203, 10 wt.% CuO + 10 wt.% Cr2O3/y-AI203 and 15 wt.% MnO2/y -A1203 have been prepared and modified by CeO2 with contents up to 20 wt.%. Physico-chemical properties of the catalysts were determined by the methods of BET Adsorption, XRD, and TPR. Oxidative activity of the catalysts was studied at the temperature range 90-220 ℃and CO concentration of 3 mol.%. Addition of CeO2 led to changes in physico-chemical properties of the catalysts and formation of novel active centres that increased the activity of CuO and Cr203 containing catalysts, but decreased the activity of those, containing MnO2. The catalyst sample containing 10 wt.% CuO and 15 wt.% CeO2 has been shown to be the best one for complete conversion of CO. At the given conditions on this catalyst the complete oxidation of CO to CO2 occurred at 130 ~C during more than 500 h.
文摘The enhancement of the physicochemical characteristics of fossil fuel has been the subject of extensive research to achieve better efficiency and reduced emissions. Diesel is one of the fossil fuels that are highly consumed in daily life. This paper focuses on the behavior of a refined diesel fuel when copper oxide nanoparticles are added. The resulting blend ofnano-diesel has been analyzed using a four-stroke engine under two loads indicating light vehicles and heavy duty vehicles. The nano-diesel was prepared by the aid of an ultrasonicator and a mechanical homogenizer. A base diesel was taken as a reference to distinguish the effect of the nanoparticles additives. Three different samples with different concentrations are utilized in this study. As a result, the fuel consumption, exhaust temperature, brake power, power losses and engine efficiency have been evaluated and compared to the base diesel in order to demonstrate and access the enhanced performance of the nano-fuel blend. The three concentrations conducted were 100 ppm, 200 ppm and 300 ppm of copper oxide nanoparticles. The results represented that the pure refinery diesel has low exhaust temperatures, high brake power and high efficiency as compared to the commercial diesel supplied from a gas station. In addition, 300 ppm copper oxide nano-diesel showed improvement in engine performances as compared to the other concentrations and pure diesel. In this context, lowest fuel consumption for both passenger cars and heavy duty vehicles was achieved, brake power for passenger cars only was improved and input power showed improvement however, exhaust temperature was the highest as for this fuel.
文摘Mine tailing soils created from the copper extraction in Touro Mine (Northwest Spain) are very degraded both physically and chemically. Three plots in this mine tailing were amended with Technosols in different proportions in each one to know if this mixture improved the physico-chemical characteristics of the mine soil and contaminated it with heavy metals. The Technosols were made of organic wastes, including mussel residues, wood fragments, sewage sludges and paper mill ashes. An unamended area was used as a control soil. Pseudototal and diethylenetriaminepentaacetic acid (DTPA)-extractable contents of A1, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in soil samples. The untreated soil had significant limitations for vegetation growth. All the Technosols improved the properties of the mine soil by increasing organic carbon and pH value, but they added Ni, Pb or Zn to the soil. It is advisable to check whether the heavy metal concentrations of the wastes are hazardous or not before adding to soils. It is also necessary to study the effect of these wastes over time and in more areas to conclude if they are actually favourable to restore degraded mine soils.
基金supported by the National Natural Science Foundation of China (21073164,20673098)the Natural Science Foundation of Zhejiang Province (Y4100620)the Research Foundation of the Education Bureau of Zhejiang Province (Y200906517)
文摘The mechanism of the action of copper-dependent quercetin 2,3-dioxygenase (2,3QD) has been investigated by means of hy- brid density functional theory. The 2,3QD enzyme cleaves the O-heterocycle of a quercetin by incorporation of both oxygen atoms into the substrate and releases carbon monoxide. The calculations show that dioxygen attack on the copper complex is energetically favorable. The adduct has a possible near-degeneracy of states between [Cu2+-(substrate H+)] and [Cu+-(sub- strate-H). ], and in addition the pyramidalized C2 atom is ideally suited for forming a dioxygembridged structure. In the next step, the C3-C4 bond is cleaved and intermediate lnt5 is formed via transition state TS4. Finally, the Oa-Ob and C2-C3 bonds are cleaved, and CO is released in one concerted transition state (TS5) with the barrier of 63.25 and 61.91 k J/tool in the gas phase and protein environments, respectively. On the basis of our proposed reaction mechanism, this is the rate-limiting step of the whole catalytic cycle and is strongly driven by a relatively large exothermicity of 100.86 kJ/mol. Our work provides some valuable fundamental insights into the behavior of this enzyme.
基金supported by the National Key R&D Program of China(2021YFA0718700,2017YFA0302902,2017YFA0303003,and 2018YFB0704102)the National Natural Science Foundation of China(11834016,11961141008,11927808,and 12174428)+3 种基金the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB25000000 and XDB33000000)the Beijing Natural Science Foundation(Z190008)CAS Interdisciplinary Innovation Team,Key-Area Research and Development Program of Guangdong Province(2020B0101340002)the Center for Materials Genome。
文摘Fe_(y)Te_(1-x)Se_(x),an archetypical iron-based high-temperature superconductor with a simple structure but rich physical properties,has attracted lots of attention because the two end compositions,Se content x=0 and 1,exhibit antiferromagnetism and nematicity,respectively,making it an ideal candidate for studying their interactions with superconductivity.However,what is clearly lacking to date is a complete phase diagram of Fe_(y)Te_(1-x)Se_(x)as functions of its chemical compositions since phase separation usually occurs from x~0.6 to 0.9 in bulk crystals.Moreover,fine control of its composition is experimentally challenging because both Te and Se are volatile elements.Here we establish a complete phase diagram of Fe_(y)Te_(1-x)Se_(x),achieved by high-throughput film synthesis and characterization techniques.An advanced combinatorial synthesis process enables us to fabricate an epitaxial composition-spread Fe_(y)Te_(1-x)Se_(x)film encompassing the entire Se content x from 0 to 1 on a single piece of CaFsubstrate.The micro-region composition analysis and X-ray diffraction show a successful continuous tuning of chemical compositions and lattice parameters,respectively.The micro-scale pattern technique allows the mapping of electrical transport properties as a function of relative Se content with an unprecedented resolution of0.0074.Combining with the spin patterns in literature,we build a detailed phase diagram that can unify the electronic and magnetic properties of Fe_(y)Te_(1-x)Se_(x).Our composition-spread Fe_(y)Te_(1-x)Se_(x) films,overcoming the challenges of phase separation and precise control of chemical compositions,provide an ideal platform for studying the relationship between superconductivity and magnetism.
基金This work was supported by the Recruitment Program of Global Youth Experts of China, the National Natural Science Foundation of China (21403267, 21450110410), and Shandong Postdoctoral Innovation Program (201303065).
文摘Ordered mesoporous Cu-Mg-A1 composite oxides were synthesized via the one-pot evaporation-in- duced self-assembly strategy. Using this method, copper was first homogeneously incorporated into the ordered mesoporous spinel matrix. After H2 reduction treatment, according to X-ray diffraction (XRD) and transmission electron microscopy (TEM) results, copper existed as metallic nanoparticles with the size of 6-10 nm that well decorated the parent mesoporous skeleton. The metallic nanoparticles were then re-oxidized to copper oxide when exposed to air or during CO oxidation reaction at low temperatures. Thus, copper migrated from bulk spinel phase to the surface after the reduction-oxidation treat- ment. Moreover, the copper on the surface was re-incor- porated into the bulk spinel phase by further thermal treatment at much higher temperature in the presence of air. The correlation between the state of copper in the mesoporous composite oxides and the catalytic perfor- mance toward CO oxidation was studied. It was found that copper existed as oxide nanoparticles on the surface of mesoporous Mg-Al skeleton is much more active than that existed as lattice Cu ions in spinel phase.
基金supported by the National Natural Science Foundation of China(21325626,21406120)
文摘In this work, the nature, location and evolution of Cu+ ions in Cu-SAPO-34 are investigated by diffuse reflectance infrared Fourier transform spectrum(DRIFTS) of CO adsorption and density functional theory(DFT) calculation. By combination with DFT results, characteristic Cu+–CO bands located at 2154 and 2136 cm.1 are attributed to CO adsorbed on Cu+ ions located at sites I(in the plane of six-membered ring connected to the large cages) and site II(in the eight-membered ring cages near the tilted four membered ring) in the framework of H-SAPO-34 zeolite. Subsequently, both the influences of Cu loading and preparation method are considered and discussed. By varying the Cu loading, the site-occupation preference of Cu+ ions on site I is confirmed,especially at low Cu loadings. Through elevating the desorption temperature, migration of Cu+ ions is revealed because of the adsorption-induced effect. Furthermore, a facile and more efficient approach to introduce Cu+ ions into CHA zeolite, compared with solid-state ion exchange with CuCl and conventional ion exchange in aqueous solution, and the different preparation methods also result in different occupations of Cu+ ions.
基金the National Natural Science Foundation of China(51825204)the Key Research Program of Frontier Sciences CAS(QYZDB-SSW-JSC039)。
文摘Metal foams with hierarchically porous structures are highly desirable in energy applications as active materials or their host substrates.However,conventional preparation methods usually have a quite limited flexibility of adjusting pore size of metal foams.Herein,an alternative new method based on gaseous thermal oxidation-nitridation-denitridation processes was developed to prepare metal(copper and nickel)foams with adjustable pore size by controlling the thermal nitridation temperature.Moreover,this environment-friendly method is independent of the shape of starting pure metal substrates and can be repeatedly applied to the metal substrates to create hierarchical porous structures containing different size pores.As a demonstration of the advantages of the resultant foams with abundant pores by this method,compared with its starting material(commercial Ni foam with the pore size of several millimeters),the resultant hierarchical porous Ni foam gives the remarkably enhanced performance of electrochemical water splitting as HER/OER electrodes and electrochemical energy storage as the host substrate of capacitive material MnO2.The metal foams with adjustable pore size prepared by the developed method will find a wide range of important applications in energy storage and conversion areas.