A novel MEMS inductor consisting of a planar single crystalline silicon spiral with a copper surface coating as the conductor is presented. Using a silicon-glass anodic bonding and deep etching formation-and-release p...A novel MEMS inductor consisting of a planar single crystalline silicon spiral with a copper surface coating as the conductor is presented. Using a silicon-glass anodic bonding and deep etching formation-and-release process,a 40μm-thick silicon spiral is formed, which is suspended on a glass substrate to eliminate substrate loss. The surfaces of the silicon spiral are coated with highly conformal copper by electroless plating to reduce the resis- tive loss in the conductor,with thin nickel film plated on the surface of the copper layer for final surface passivation. The fabricated inductor exhibits a self-resonance frequency higher than 15GHz,with a quality factor of about 40 and an inductance of over 5nil at 11.3GHz. Simulations based on a compact equivalent circuit model of the inductor and parameter extraction using a characteristic-function approach are carried out,and good agreement with measurements is obtained.展开更多
Carboxyl graphene modified CuxO/Cu electrode was fabricated. The bare copper electrode was firstly anodic polarized in 1.0 mol/L NaOH solution in order to get CuxO nanoparticles, then the carboxyl graphene (CG) was ...Carboxyl graphene modified CuxO/Cu electrode was fabricated. The bare copper electrode was firstly anodic polarized in 1.0 mol/L NaOH solution in order to get CuxO nanoparticles, then the carboxyl graphene (CG) was electrodeposited on the CuxO/Cu electrode by cyclic potential sweeping. The electrocatalytic oxidation behaviors of calcium folinate (CF) at the graphene modified CuxO/Cu electrode were investigated by cyclic voltammetry. A positive scan polarization reverse catalytic voltammetry was used to obtain the pure catalytic oxidation current. The graphene modified CuxO/Cu electrode was served as the electrochemical sensor of CF, a highly sensitivity of 22.0μA.(μmol/μL)^-1cm^-2 was achieved, and the current response was linear with increasing CF concentration in the range of 2.0×10^-7 mol/L to 2.0×10^-5 mol/L, which crossed three orders of magnitude, and the detection limit was found 7.6×10^-5 mol/L (S/N=3). In addition, the proposed sensor was successfully applied in determination of CF in drug sample.展开更多
Morphology-controlled synthesis of copper vanadate nanocrystals is of great significance in electrochemical sensing applications.A facile hydrothermal process for synthesizing copper vanadate nanocrystals with various...Morphology-controlled synthesis of copper vanadate nanocrystals is of great significance in electrochemical sensing applications.A facile hydrothermal process for synthesizing copper vanadate nanocrystals with various morphologies(e.g.,nanoparticles,nanobelts and nanoflowers)was reported.Phase,morphology and electrochemical performance of the as-synthesized copper vanadate nanocrystals were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM)and cyclic-voltammogram(CV)techniques.The results revealed that the morphologies of the Cu3V2O7(OH)2·2H2O(CVOH)nanocrystals could be controlled by changing copper salts,surfactants and pH values.The CVOH samples showed enhanced electrochemical response to ascorbic acid.Comparatively,the CVOH nanobelts had the higher electrochemical sensing performance than those of CVOH nanoparticles and nanoflowers.The CVOH-nanobelts-modified GCEs had a linear relationship between the peak currents in their CVs and ascorbic acid concentration.The CVOH nanocrystals can be used as potential electrochemical active materials for the determination of ascorbic acid.展开更多
The authors studied the changes in the electrical properties of PANI (polyaniline) when exposed to the presence of N20 (nitrous oxide). The techniques used to determine the adsorption of gas in the polymer were th...The authors studied the changes in the electrical properties of PANI (polyaniline) when exposed to the presence of N20 (nitrous oxide). The techniques used to determine the adsorption of gas in the polymer were the electrochemical impedance, steps voltammetry and transmission electron microscopy. The objective of this work was to determine the ability of adsorption and desorption of PANI to be used as sensor in an open environment. Measurements were performed in a controlled atmosphere, temperature and flux. The gas was passed through a glass capsule in which an electrochemical cell was designed with copper electrodes and PANI as electrolyte. The change in electrical properties of the material is analyzed using a potentiostat/galvanostat in situ. Subsequently, the material was analyzed by TEM (Transmission Electron Microscopy) elemental analysis. The measurements were performed with difl^rent concentrations of N20 with a purity of 99%. As a result of measurements, it was found that the change in electrical resistance of PANI is caused by the physical interaction that occurs when in contact with NzO and even a change in the morphology of polymer, however, the binding is weak and sufficient to increase the temperature at which 25% PANI film regains its original properties.展开更多
The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constrai...The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.展开更多
文摘A novel MEMS inductor consisting of a planar single crystalline silicon spiral with a copper surface coating as the conductor is presented. Using a silicon-glass anodic bonding and deep etching formation-and-release process,a 40μm-thick silicon spiral is formed, which is suspended on a glass substrate to eliminate substrate loss. The surfaces of the silicon spiral are coated with highly conformal copper by electroless plating to reduce the resis- tive loss in the conductor,with thin nickel film plated on the surface of the copper layer for final surface passivation. The fabricated inductor exhibits a self-resonance frequency higher than 15GHz,with a quality factor of about 40 and an inductance of over 5nil at 11.3GHz. Simulations based on a compact equivalent circuit model of the inductor and parameter extraction using a characteristic-function approach are carried out,and good agreement with measurements is obtained.
文摘Carboxyl graphene modified CuxO/Cu electrode was fabricated. The bare copper electrode was firstly anodic polarized in 1.0 mol/L NaOH solution in order to get CuxO nanoparticles, then the carboxyl graphene (CG) was electrodeposited on the CuxO/Cu electrode by cyclic potential sweeping. The electrocatalytic oxidation behaviors of calcium folinate (CF) at the graphene modified CuxO/Cu electrode were investigated by cyclic voltammetry. A positive scan polarization reverse catalytic voltammetry was used to obtain the pure catalytic oxidation current. The graphene modified CuxO/Cu electrode was served as the electrochemical sensor of CF, a highly sensitivity of 22.0μA.(μmol/μL)^-1cm^-2 was achieved, and the current response was linear with increasing CF concentration in the range of 2.0×10^-7 mol/L to 2.0×10^-5 mol/L, which crossed three orders of magnitude, and the detection limit was found 7.6×10^-5 mol/L (S/N=3). In addition, the proposed sensor was successfully applied in determination of CF in drug sample.
基金Projects(51404213,51404214,51574205,51172211)supported by the National Natural Science Foundation of ChinaProjects(14HASTIT011,154100510003)supported by the Program for University Science and Technology Innovation Talents of Henan Province,China+1 种基金Projects(2013M531682,2014T70682)supported by the China Postdoctoral Science FundProject(1421324065)supported by the Development Fund for Outstanding Young Teachers of Zhengzhou University,China
文摘Morphology-controlled synthesis of copper vanadate nanocrystals is of great significance in electrochemical sensing applications.A facile hydrothermal process for synthesizing copper vanadate nanocrystals with various morphologies(e.g.,nanoparticles,nanobelts and nanoflowers)was reported.Phase,morphology and electrochemical performance of the as-synthesized copper vanadate nanocrystals were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM)and cyclic-voltammogram(CV)techniques.The results revealed that the morphologies of the Cu3V2O7(OH)2·2H2O(CVOH)nanocrystals could be controlled by changing copper salts,surfactants and pH values.The CVOH samples showed enhanced electrochemical response to ascorbic acid.Comparatively,the CVOH nanobelts had the higher electrochemical sensing performance than those of CVOH nanoparticles and nanoflowers.The CVOH-nanobelts-modified GCEs had a linear relationship between the peak currents in their CVs and ascorbic acid concentration.The CVOH nanocrystals can be used as potential electrochemical active materials for the determination of ascorbic acid.
文摘The authors studied the changes in the electrical properties of PANI (polyaniline) when exposed to the presence of N20 (nitrous oxide). The techniques used to determine the adsorption of gas in the polymer were the electrochemical impedance, steps voltammetry and transmission electron microscopy. The objective of this work was to determine the ability of adsorption and desorption of PANI to be used as sensor in an open environment. Measurements were performed in a controlled atmosphere, temperature and flux. The gas was passed through a glass capsule in which an electrochemical cell was designed with copper electrodes and PANI as electrolyte. The change in electrical properties of the material is analyzed using a potentiostat/galvanostat in situ. Subsequently, the material was analyzed by TEM (Transmission Electron Microscopy) elemental analysis. The measurements were performed with difl^rent concentrations of N20 with a purity of 99%. As a result of measurements, it was found that the change in electrical resistance of PANI is caused by the physical interaction that occurs when in contact with NzO and even a change in the morphology of polymer, however, the binding is weak and sufficient to increase the temperature at which 25% PANI film regains its original properties.
文摘The aim of this study was to design three-phase induction motors with aluminum and copper cage, in the range 0.75 ÷22 kW, to fulfill the 1E3 efficiency level according to typical performance and standard constraints. The proposed study has concerned TEFC ( totally Enclosed Fan-Cooled ), 400 V, 50 Hz, SI duty three phase squirrel-cage induction motors only. The motors' designs, with AI and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at lowest active material costs and satisfy the physical and performance constraints of the designs, which are the motor specifications. A suitable optimization procedure has been used which allowed to find the "best design" by chancing the geometric dimensions of the stator, rotor shape, the stator winding and the stack length. In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been imposed.