Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded a...Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded as DTC8-Cu) were analyzed by means of X-ray diffraction, transmission electron microscopy and infrared spectrometry. The tribological behavior of DTC8-Cu as an additive in liquid paraffin was evaluated with a four-ball machine, and the surface topography of the wear scar was also examined by means of scanning electron microscopy. Results show that Cu nanoparticles modified by DTC8 have a small particle size and a narrow size distribution. Besides, DTC8-Cu as an additive in liquid paraffin has excellent antiwear ability, due to the deposition of nano-Cu with low melting point on worn steel surface leading to the formation of a self-repairing protective layer thereon.展开更多
Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of ele...Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of electrical current on tribological property of the materials was investigated by using a pin-on-disk friction and wear tester.The results show that the friction coefficient and wear rate of CNTs/Cu composite as well as those of pure Cu bulk increase with increasing the electrical current without exception,and the effect of electrical current is more obvious on tribological property of pure Cu bulk than on that of CNTs/Cu composite;the dominant wear mechanisms are arc erosion wear and plastic flow deformation,respectively;CNTs can improve tribological property of Cu matrix composites with electrical current.展开更多
In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and mat...In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.展开更多
A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited o...A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited on copper foil via a modified anodization technology,and the growth degree and density of the Cu(OH)2 arrays may be controlled varying with position along the substrate by slowly adding aqueous solution of KOH into the two-electrode cell of an anodization system to form the gradient surface.The prepared surface was water resistant and thermal stable,which could keep its gradient wetting property after being immersed in water bath at 100℃ for 10 h.The results of scanning electron microscopy(SEM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) demonstrate that the distribution of Cu(OH)2 nanoribbon arrays on copper surface are responsible for the gradient wettability.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles ...Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.展开更多
Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial...Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.展开更多
A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a fa...A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.展开更多
Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emissi...Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the crystalline structure, chemical valence states and morphology of TiO2 nanoparticles. UV-Vis absorption spectrum was used to measure the optical absorption property of the samples. The photocatalytic performance of the samples was characterized by degrading 20 mg/L methyl orange under UV-Vis irradiation. The results show that the Cu-doped TiO2 nanoparticles exhibit a significant increase in photocatalytic performance over the pure TiO2 nanoparticles, and the TiO2 nanoparticles doped with 1.0% Cu show the best photocatalytic performance. The improvement in photocatalytic performance is attributed to the enhanced light adsorption in UV-Vis range and the decrease of the recombination rate of photoinduced electron-hole oair of the Cu-doped TiO2 nanoparticles.展开更多
A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was ...A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and 5 μm,respectively. The different amount of octahedral Cu2 O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2 O nanoparticles exhibited high efficiency in the photocatalysis,and the predominant hydrocarbon product was methane. The methane yield increased with increasing Cu2 O content of the catalyst up to a certain deposition time,and decreased with further increase in Cu2 O deposition time. Insufficient deposition time(5 min) resulted in a small amount of Cu2 O nanoparticles on the TNTs,leading to the disadvantage of harvesting light. However,excess deposition time(45 min) gave rise to entire TNT surface being most covered with Cu2 O nanoparticles with large sizes,inconvenient for the transport of photo-generated carriers. The highest methane yield under simulated solar and visible light irradiation was observed for the catalysts prepared at a Cu2 O deposition time of 15 and 30 min respectively. The morphology,crystallization,photoresponse and electrochemical properties of the catalyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants,and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2 O nanoparticles promoted light absorption,and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O-modified TNT photocatalyst with high efficiency in the reduction of CO2,without requiring co-catalysts or sacrificial agents.展开更多
基金Project (2007CB607606) supported by the Ministry of Science and Technology of ChinaProject (50975077) supported by the National Natural Science Foundation of China
文摘Cu nanoparticles surface-modified by dioctylamine dithiocarbamate (DTC8) were synthesized using a two-phase extraction route. The size, morphology and structure of resultant surface-capped Cu nanoparticles (coded as DTC8-Cu) were analyzed by means of X-ray diffraction, transmission electron microscopy and infrared spectrometry. The tribological behavior of DTC8-Cu as an additive in liquid paraffin was evaluated with a four-ball machine, and the surface topography of the wear scar was also examined by means of scanning electron microscopy. Results show that Cu nanoparticles modified by DTC8 have a small particle size and a narrow size distribution. Besides, DTC8-Cu as an additive in liquid paraffin has excellent antiwear ability, due to the deposition of nano-Cu with low melting point on worn steel surface leading to the formation of a self-repairing protective layer thereon.
基金Project(2007CB607603)supported by the National Basic Research Program of China
文摘Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of electrical current on tribological property of the materials was investigated by using a pin-on-disk friction and wear tester.The results show that the friction coefficient and wear rate of CNTs/Cu composite as well as those of pure Cu bulk increase with increasing the electrical current without exception,and the effect of electrical current is more obvious on tribological property of pure Cu bulk than on that of CNTs/Cu composite;the dominant wear mechanisms are arc erosion wear and plastic flow deformation,respectively;CNTs can improve tribological property of Cu matrix composites with electrical current.
基金Project(50975095)supported by the National Natural Science Foundation of ChinaProject(2012ZM0048)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.
基金Project(S2012010010417)supported by the Guangdong Natural Science Foundation,ChinaProject(20130172110008)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited on copper foil via a modified anodization technology,and the growth degree and density of the Cu(OH)2 arrays may be controlled varying with position along the substrate by slowly adding aqueous solution of KOH into the two-electrode cell of an anodization system to form the gradient surface.The prepared surface was water resistant and thermal stable,which could keep its gradient wetting property after being immersed in water bath at 100℃ for 10 h.The results of scanning electron microscopy(SEM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) demonstrate that the distribution of Cu(OH)2 nanoribbon arrays on copper surface are responsible for the gradient wettability.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.
文摘Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.
基金Project(CXZZ11-0812)supported by Graduate Students Innovative Projects of Jiangsu Province,ChinaProject(J20122288)supported by Guizhou Provincial Natural Science Foundation of China+1 种基金Project(Y4110235)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(JKY2011008)supported by Fundamental Research Funds for the Central Universities,China
文摘Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.
基金This work was supported by tile Key Projects of Natural Science Research of Universities in Anhui Province (No.KJ2015A183, No.KJ2015A201) and Talents Foundation of Hefei University (No.15RC05), Anhui Province Natural Science Foundation (No.1608085MD78), the Key Projects of Anhui Province University Outstanding Youth Talent Support Program (gxyqZD2016274), the National Natural Science Foundation of China (No.21305142, No.51403048).
文摘A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.
基金Project(2010CB631001)supported by the National Basic Research Program of ChinaProject(50871046)supported by the National Natural Science Foundation of China
文摘Cu-doped TiO2 nanoparticles with different doping contents from 0 to 2.0% (mole fraction) were synthesized through sol-gel method. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the crystalline structure, chemical valence states and morphology of TiO2 nanoparticles. UV-Vis absorption spectrum was used to measure the optical absorption property of the samples. The photocatalytic performance of the samples was characterized by degrading 20 mg/L methyl orange under UV-Vis irradiation. The results show that the Cu-doped TiO2 nanoparticles exhibit a significant increase in photocatalytic performance over the pure TiO2 nanoparticles, and the TiO2 nanoparticles doped with 1.0% Cu show the best photocatalytic performance. The improvement in photocatalytic performance is attributed to the enhanced light adsorption in UV-Vis range and the decrease of the recombination rate of photoinduced electron-hole oair of the Cu-doped TiO2 nanoparticles.
基金supported by the National Natural Science Foundation of China(2137704421573085)+5 种基金the Key Project of Natural Science Foundation of Hubei Province(2015CFA037)Wuhan Planning Project of Science and Technology(2014010101010023)Self-determined Research Funds of CCNU from the Colleges’Basic Research and Operation of MOE(CCNU15ZD007CCNU15KFY005)China Postdoctoral Science Foundation(2015M572187)Hubei Provincial Department of Education(D20152702)~~
文摘A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and 5 μm,respectively. The different amount of octahedral Cu2 O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2 O nanoparticles exhibited high efficiency in the photocatalysis,and the predominant hydrocarbon product was methane. The methane yield increased with increasing Cu2 O content of the catalyst up to a certain deposition time,and decreased with further increase in Cu2 O deposition time. Insufficient deposition time(5 min) resulted in a small amount of Cu2 O nanoparticles on the TNTs,leading to the disadvantage of harvesting light. However,excess deposition time(45 min) gave rise to entire TNT surface being most covered with Cu2 O nanoparticles with large sizes,inconvenient for the transport of photo-generated carriers. The highest methane yield under simulated solar and visible light irradiation was observed for the catalysts prepared at a Cu2 O deposition time of 15 and 30 min respectively. The morphology,crystallization,photoresponse and electrochemical properties of the catalyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants,and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2 O nanoparticles promoted light absorption,and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O-modified TNT photocatalyst with high efficiency in the reduction of CO2,without requiring co-catalysts or sacrificial agents.