The biosorption of copper(Ⅱ) ions onto biofilm was studied in a batch system with respect to the temperature, initial pH value and biofilm sorbent mass. The biomass exhibited the highest copper(Ⅱ) sorption capacity ...The biosorption of copper(Ⅱ) ions onto biofilm was studied in a batch system with respect to the temperature, initial pH value and biofilm sorbent mass. The biomass exhibited the highest copper(Ⅱ) sorption capacity under the conditions of room temperature, initial pH value of 6.0 and the sorbent mass 8 g. The experimental data were analyzed using four sorption kinetic models, the pseudo-first order, the Ritchie second order, the modified second order and the Elovich equations to determine the best-fit equation for the sorption of metal ions onto biofilm. Comparing with the sum of squared-errors, the results show that both the Ritchie second order and modified second order equations can fit the experimental data very well.展开更多
In-situ prepared MoO3 thin layer has been introduced to suppress the formation of too thick Mo(S,Se)2layer in Cu2ZnSnSxSe4–x(CZTSSe) solar cells. This MoO3 layer effectively improves the back interfacial contact betw...In-situ prepared MoO3 thin layer has been introduced to suppress the formation of too thick Mo(S,Se)2layer in Cu2ZnSnSxSe4–x(CZTSSe) solar cells. This MoO3 layer effectively improves the back interfacial contact between CZTSSe absorber layer and Mo substrate without poisoning the carrier transport. Up to 10.58% power conversion efficiency has been achieved.展开更多
文摘The biosorption of copper(Ⅱ) ions onto biofilm was studied in a batch system with respect to the temperature, initial pH value and biofilm sorbent mass. The biomass exhibited the highest copper(Ⅱ) sorption capacity under the conditions of room temperature, initial pH value of 6.0 and the sorbent mass 8 g. The experimental data were analyzed using four sorption kinetic models, the pseudo-first order, the Ritchie second order, the modified second order and the Elovich equations to determine the best-fit equation for the sorption of metal ions onto biofilm. Comparing with the sum of squared-errors, the results show that both the Ritchie second order and modified second order equations can fit the experimental data very well.
基金financially supported by the National Natural Science Foundation of China (91733301, 51761145042, 51627803, 21501183, 51402348, 11474333, 91433205 and 51421002)the Knowledge Innovation Program and the Strategic Priority Research Program (Grant XDB 12010400) of the Chinese Academy of Sciences
文摘In-situ prepared MoO3 thin layer has been introduced to suppress the formation of too thick Mo(S,Se)2layer in Cu2ZnSnSxSe4–x(CZTSSe) solar cells. This MoO3 layer effectively improves the back interfacial contact between CZTSSe absorber layer and Mo substrate without poisoning the carrier transport. Up to 10.58% power conversion efficiency has been achieved.