Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they ...Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they still face challenges pertaining of poor stability and low activity,which hinder their further application.Herein,we present a Cu_(2)O/Cu heterojunction catalyst supported on nitrogen-doped porous carbon for nitrate reduction.High resolution transmission electron microscopy(HRTEM)and X-ray Diffraction(XRD)results confirm the presence of Cu_(2)O/Cu heterojunctions,which serve as an active phase in catalysis.The nitrogen-doped porous carbon as a carrier not only enhances the catalyst’s stability,but also facilitates the exposure and dispersion of active sites.At-1.29 V(vs.RHE),the maximum production rate of ammonia reaches 8.8 mg/(mg·h)with a Faradaic efficiency of 92.8%.This study also elucidates the effect of Cu_(2)O-to-Cu ratio in the heterojunction on catalytic performance,thereby providing valuable insights for designing efficient nitrate reduction catalysts for ammonia production.展开更多
The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As ...The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As and 0.5 g/L Bi. The electrolyte was filtered, and the precipitate structure, morphology and composition were characterized by chemical analysis, SEM, TEM, EDS, XRD and FTIR. The results show that the precipitate is in the shape of many irregular lumps with size of 50-200 μm, and it mainly consists of As, Sb, Bi and O elements. The main characteristic bands in the FTIR spectra of the precipitate are As-O-As, As-O-Sb, Sb-O-Bi, Sb-O-Sb and Bi-O-Bi. The precipitate is the mixture of microcrystalline of AsSbO4, BiSbO4 and Bi3SbO7 by XRD and electronic diffraction. The removal of As, Sb and Bi impurities by Sb(V) ion can be mainly ascribed to the formation of antimonate in copper electrolytes.展开更多
Batch and soil column experiments were conducted to evaluate the influence of KH2PO4, (NH4)H2PO4and Ca(H2PO4)2on the adsorption and leaching characteristics of Cu and Zn in red soil. The results show that all the ...Batch and soil column experiments were conducted to evaluate the influence of KH2PO4, (NH4)H2PO4and Ca(H2PO4)2on the adsorption and leaching characteristics of Cu and Zn in red soil. The results show that all the three phosphates can greatly improve the adsorption capacity of red soil for Cu and Zn, and the effect of different phosphates on Cu and Zn adsorption follows the order of Ca(H2PO4)2〉KH2PO4〉(NH4)H2PO4. The addition of phosphate has little effect on the mobility of Cu. Ca(H2PO4)2and (NH4)H2PO4 show a strong ability in immobilizing Zn while the immobilization ability of KH2PO4 is much weaker. All the three phosphates are helpful for modifying the partitioning of Cu and Zn from the non-residual phase to the residual phase; however, they could also enhance the contents of Cu and Zn associated with exchangeable and carbonates fractions.展开更多
The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentratio...The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(DUT22LAB601)the Technology Development Contract of Sinopec(123038).
文摘Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they still face challenges pertaining of poor stability and low activity,which hinder their further application.Herein,we present a Cu_(2)O/Cu heterojunction catalyst supported on nitrogen-doped porous carbon for nitrate reduction.High resolution transmission electron microscopy(HRTEM)and X-ray Diffraction(XRD)results confirm the presence of Cu_(2)O/Cu heterojunctions,which serve as an active phase in catalysis.The nitrogen-doped porous carbon as a carrier not only enhances the catalyst’s stability,but also facilitates the exposure and dispersion of active sites.At-1.29 V(vs.RHE),the maximum production rate of ammonia reaches 8.8 mg/(mg·h)with a Faradaic efficiency of 92.8%.This study also elucidates the effect of Cu_(2)O-to-Cu ratio in the heterojunction on catalytic performance,thereby providing valuable insights for designing efficient nitrate reduction catalysts for ammonia production.
基金Project(50904023)supported by the National Natural Science Foundation of ChinaProject(2010B450001)supported by the Natural Science Fund of Department of Education of Henan Province,ChinaProject(092300410064)supported by the Basic and Frontier Technologies Research Projects of Henan Province,China
文摘The function mechanism of Sb(V) in As, Sb and Bi impurities removal from copper electrolyte was investigated by adding Sb(V) ion in a synthetic copper electrolyte containing 45 g/L Cu2+, 185 g/L H2SO4, 10 g/L As and 0.5 g/L Bi. The electrolyte was filtered, and the precipitate structure, morphology and composition were characterized by chemical analysis, SEM, TEM, EDS, XRD and FTIR. The results show that the precipitate is in the shape of many irregular lumps with size of 50-200 μm, and it mainly consists of As, Sb, Bi and O elements. The main characteristic bands in the FTIR spectra of the precipitate are As-O-As, As-O-Sb, Sb-O-Bi, Sb-O-Sb and Bi-O-Bi. The precipitate is the mixture of microcrystalline of AsSbO4, BiSbO4 and Bi3SbO7 by XRD and electronic diffraction. The removal of As, Sb and Bi impurities by Sb(V) ion can be mainly ascribed to the formation of antimonate in copper electrolytes.
基金Project(41271294)supported by the National Natural Science Foundation of ChinaProject(NCET-09-330)supported by Program for New Century Excellent Talents in University,China
文摘Batch and soil column experiments were conducted to evaluate the influence of KH2PO4, (NH4)H2PO4and Ca(H2PO4)2on the adsorption and leaching characteristics of Cu and Zn in red soil. The results show that all the three phosphates can greatly improve the adsorption capacity of red soil for Cu and Zn, and the effect of different phosphates on Cu and Zn adsorption follows the order of Ca(H2PO4)2〉KH2PO4〉(NH4)H2PO4. The addition of phosphate has little effect on the mobility of Cu. Ca(H2PO4)2and (NH4)H2PO4 show a strong ability in immobilizing Zn while the immobilization ability of KH2PO4 is much weaker. All the three phosphates are helpful for modifying the partitioning of Cu and Zn from the non-residual phase to the residual phase; however, they could also enhance the contents of Cu and Zn associated with exchangeable and carbonates fractions.
基金Project(2007CB613601)supported by the National Basic Research Program of ChinaProject(10C1095)supported by the Foundation of Hunan Educational Committee,China
文摘The leaching kinetics of copper from low-grade copper ore was investigated in ammonia-ammonium sulfate solution with sodium persulfate. The effect parameters of stirring speed, temperature, particle size, concentrations of ammonia, ammonium sulfate and sodium persulfate were determined. The results show that the leaching rate is nearly independent of agitation above 300 r/min and increases with the increase of temperature, concentrations of ammonia, ammonium sulfate and sodium persulfate. The EDS analysis and phase quantitative analysis of the residues indicate that bornite can be dissolved by persulfate oxidization. The leaching kinetics with activation energy of 22.91 kJ/mol was analyzed by using a new shrinking core model (SCM) in which both the interfacial transfer and diffusion across the product layer affect the leaching rate. A semi-empirical rate equation was obtained to describe the leaching process and the empirical reaction orders with respect to the concentrations of ammonia, ammonium sulfate and sodium persulfate are 0.5, 1.2 and 0.5, respectively.