The GARCH and DCC-GARCH models are used to study the volatility aggregation and dynamic relevance of China’s three kinds of nonferrous metals (copper, aluminum and zinc) pricesincorporating structural changes. The ...The GARCH and DCC-GARCH models are used to study the volatility aggregation and dynamic relevance of China’s three kinds of nonferrous metals (copper, aluminum and zinc) pricesincorporating structural changes. The results show that copper, aluminum and zinc returns have many structure breaks points, and nonferrous metals have the greatvolatilityrisk during financial crisis. From the resultsof GARCH with and without structural changes,it isfoundthat the volatility clustering of single nonferrous metal is overvalued when ignoring the structural mutation, and the return of aluminum isthe most overvalued, indicating that aluminum market is more susceptible to external shock.Furthermore,it is also foundthatdynamic volatility correlation exists in the three prices of nonferrous metals, and the structural changes have no significant effect on the volatility correlation of thethree nonferrous metals.展开更多
Al-Cu alloy was deformed through equal channel angular pressing(ECAP) by routes A,Ba,Bc and C up to 5 passes.ECAP was done using a 90° die for three different conditions,namely 1) as received,2) solutionised at 7...Al-Cu alloy was deformed through equal channel angular pressing(ECAP) by routes A,Ba,Bc and C up to 5 passes.ECAP was done using a 90° die for three different conditions,namely 1) as received,2) solutionised at 768 K for 1 h and 3) solutionised at 768 K for 1 h + aged at 468 K for 5 h.The microstructure,microhardness and tensile strength were studied for all the three conditions and four routes.Significant improvement in hardness(HV 184 after five passes) and strength(602 MPa after three passes) was observed in solutionised and aged 2014 Al alloy deformed through route Bc.Microstructure evolution was reasonably equiaxed in route Bc with aspect ratio of 1.6.Solutionised and aged 2014 Al alloy deformed through route Bc was identified to have better microstructure and mechanical property than the other processing routes and conditions.展开更多
A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The inf...A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.展开更多
An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface ar...An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.展开更多
In the present work,samples of Al-Si-Cu piston alloy after T6 heat treatment were exposed for 2 h at temperatures ranging from 400 to 550°C.The evolution of surface roughness and microstructure of the alloy durin...In the present work,samples of Al-Si-Cu piston alloy after T6 heat treatment were exposed for 2 h at temperatures ranging from 400 to 550°C.The evolution of surface roughness and microstructure of the alloy during thermal exposure was studied by combination methods of roughness profiles,optical and scanning electron microscopy as well as XRD analysis.It is found that the roughness and mass of the alloy increase with the raise of the thermal exposure temperature,and the increasing rates of them are slow as the exposure temperature is below 500°C,but accelerates abruptly when the temperature is higher than 500°C.The variation of surface roughness of the alloy is closely related to phase transformation and oxidation during the thermal exposure.展开更多
The microstructures and mechanical properties of Al-6Zn-2Mg-1.5Cu-0.4Er alloy under different treatment conditions were investigated by transmission electron microscopy (TEM) observation, and tensile properties and ...The microstructures and mechanical properties of Al-6Zn-2Mg-1.5Cu-0.4Er alloy under different treatment conditions were investigated by transmission electron microscopy (TEM) observation, and tensile properties and hardness test, respectively. The relationship between mechanical properties and microstructures of the alloys was discussed. With trace Er addition to A1-Zn-Mg-Cu alloy, Er and Al interact to form Al3Er phase, which is coherent with a(A1) matrix. The results show that Al-Zn-Mg-Cu alloy after retrogression and re-ageing (RRA) heat treatment exhibits higher tensile strength, ductility and conductivity.展开更多
基金Project(71072079)supported by the National Natural Science Foundation of China
文摘The GARCH and DCC-GARCH models are used to study the volatility aggregation and dynamic relevance of China’s three kinds of nonferrous metals (copper, aluminum and zinc) pricesincorporating structural changes. The results show that copper, aluminum and zinc returns have many structure breaks points, and nonferrous metals have the greatvolatilityrisk during financial crisis. From the resultsof GARCH with and without structural changes,it isfoundthat the volatility clustering of single nonferrous metal is overvalued when ignoring the structural mutation, and the return of aluminum isthe most overvalued, indicating that aluminum market is more susceptible to external shock.Furthermore,it is also foundthatdynamic volatility correlation exists in the three prices of nonferrous metals, and the structural changes have no significant effect on the volatility correlation of thethree nonferrous metals.
文摘Al-Cu alloy was deformed through equal channel angular pressing(ECAP) by routes A,Ba,Bc and C up to 5 passes.ECAP was done using a 90° die for three different conditions,namely 1) as received,2) solutionised at 768 K for 1 h and 3) solutionised at 768 K for 1 h + aged at 468 K for 5 h.The microstructure,microhardness and tensile strength were studied for all the three conditions and four routes.Significant improvement in hardness(HV 184 after five passes) and strength(602 MPa after three passes) was observed in solutionised and aged 2014 Al alloy deformed through route Bc.Microstructure evolution was reasonably equiaxed in route Bc with aspect ratio of 1.6.Solutionised and aged 2014 Al alloy deformed through route Bc was identified to have better microstructure and mechanical property than the other processing routes and conditions.
文摘A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.
基金Project(60806006) supported by the National Natural Science Foundation of China
文摘An aluminum/copper clad composite was fabricated by the casting-cold extrusion forming technology and the microstructures of the products were observed and analyzed.It is found that aluminum grains at the interface are refined in the radial profiles of cone-shaped deformation zone,but the grains in the center maintain the original state and the grain size is non-uniform.A clear boundary presents between the refined area and center area.In contrast,the copper grains in the radial profiles have been significantly refined.In the center area of the copper,the grains are bigger than those at the boundary.On the surface of the deformable body,the grain size is the smallest,but with irregular grain morphology.After the product is entirely extruded,all the copper and aluminum grains are refined with small and uniform morphology.In the center area,the average diameter of aluminum grains is smaller than 5 μm,and the copper grain on the surface is about 10 μm.At the interface,the grain size is very small,with a good combination of copper and aluminum.The thickness of interface is in the range of 10-15 μm.Energy spectrum analysis shows that CuAl3 phase presents at the interface.
基金Project(DLBF2018-KY-JS-066-J)supported by China North Engine Research InstituteProject(XAGDXJJ17008)supported by the Principal Fund of Xi’an Technological University,ChinaProjects(19JK0400,19JK0402)supported by the Education Fund of Shaanxi Province,China。
文摘In the present work,samples of Al-Si-Cu piston alloy after T6 heat treatment were exposed for 2 h at temperatures ranging from 400 to 550°C.The evolution of surface roughness and microstructure of the alloy during thermal exposure was studied by combination methods of roughness profiles,optical and scanning electron microscopy as well as XRD analysis.It is found that the roughness and mass of the alloy increase with the raise of the thermal exposure temperature,and the increasing rates of them are slow as the exposure temperature is below 500°C,but accelerates abruptly when the temperature is higher than 500°C.The variation of surface roughness of the alloy is closely related to phase transformation and oxidation during the thermal exposure.
基金Project(2005CB623706) supported by the National Basic Research Program of China
文摘The microstructures and mechanical properties of Al-6Zn-2Mg-1.5Cu-0.4Er alloy under different treatment conditions were investigated by transmission electron microscopy (TEM) observation, and tensile properties and hardness test, respectively. The relationship between mechanical properties and microstructures of the alloys was discussed. With trace Er addition to A1-Zn-Mg-Cu alloy, Er and Al interact to form Al3Er phase, which is coherent with a(A1) matrix. The results show that Al-Zn-Mg-Cu alloy after retrogression and re-ageing (RRA) heat treatment exhibits higher tensile strength, ductility and conductivity.