Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-...Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.展开更多
Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra ...Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra and the auger spectra, the valence states of chromium ion and copper ion were+3 and+1 after radiation respectively, which still had the reducibility to release electrons. In contrast with the near-infrared(NIR)1 064 nm and mid-infrared(MIR) 10 600 nm laser at the same average output power of 15 W, the reduced metal percentage in the Cu-Cr complex was obviously distinguished at the depth from nanometer to micron. After chemical plating, the average coating thickness and mean-square deviation of the NIR sample were 11.61 μm and 0.30 for copper layer, and 2.69 μm and 0.08 for nickel layer. The results were much better than those of the MIR sample.展开更多
基金Project (2003AA305820) supported by the National High-Tech Research and Development Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University, China
文摘Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.
基金Supported by the National Basic Research Program of China("973"Program,No.2010CB327800)National Natural Science Foundation of China(No.11004150)Postdoctoral Science Foundation of China(No.20090460690)
文摘Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra and the auger spectra, the valence states of chromium ion and copper ion were+3 and+1 after radiation respectively, which still had the reducibility to release electrons. In contrast with the near-infrared(NIR)1 064 nm and mid-infrared(MIR) 10 600 nm laser at the same average output power of 15 W, the reduced metal percentage in the Cu-Cr complex was obviously distinguished at the depth from nanometer to micron. After chemical plating, the average coating thickness and mean-square deviation of the NIR sample were 11.61 μm and 0.30 for copper layer, and 2.69 μm and 0.08 for nickel layer. The results were much better than those of the MIR sample.