期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于FA-PSO-RBF神经网络的富氧底吹铜锍品位预测模型 被引量:2
1
作者 黄旷 张晓龙 +4 位作者 胡建杭 徐建新 宋进 武龙飞 刘杰 《有色金属(冶炼部分)》 CAS 北大核心 2023年第6期61-68,102,共8页
铜锍品位是富氧底吹铜熔炼过程中的一个关键工艺参数,针对铜锍品位实时检测困难、检测结果滞后时间长、指导生产工艺参数优化滞后等问题,基于生产数据深入挖掘及处理,提出了一种基于FA-PSO-RBF神经网络的铜锍品位预测模型。首先为了降... 铜锍品位是富氧底吹铜熔炼过程中的一个关键工艺参数,针对铜锍品位实时检测困难、检测结果滞后时间长、指导生产工艺参数优化滞后等问题,基于生产数据深入挖掘及处理,提出了一种基于FA-PSO-RBF神经网络的铜锍品位预测模型。首先为了降低模型的预测误差,利用FA分析方法对原始生产数据进行降维处理,确定主要因子数量为6个,并计算因子得分,然后针对RBF神经网络模型对关键参数依赖性较大的不足,利用改进PSO算法对网络结构中的关键参数进行寻优,最后,以因子得分为输入,铜锍品位值为输出,通过实际生产数据验证模型的准确性,并与RBF、标准PSO-RBF预测模型进行对比,结果表明,本文构建的铜锍品位预测模型预测精度更高,与标准PSO-RBF预测模型相比,RMSE和MAE的值分别降低了17.2%和21.2%,该预测模型对富氧底吹铜熔炼生产过程参数优化控制提供了一种方法借鉴。 展开更多
关键词 FA分析 改进PSO算法 RBF 铜锍品位预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部