Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS....Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS.The effect of the p H value of the solution on the formation of the LDH coatings was studied.The optimum p H value of the solution was 10.0.The corrosion resistance of the LDH coatings was studied using potentiodynamic polarization tests and electrochemical impedance spectrum(EIS).The results demonstrate that the LDH coatings,characterized by platelets vertically to the substrate surface possess excellent corrosion resistance.The influence of the hydrothermal crystallization time on the corrosion resistance was evaluated.Prolonging the crystallization time can increase the corrosion resistance of the obtained LDH coatings.The anticorrosion mechanism of the LDH coatings was discussed.展开更多
An experiment was conducted to examine the role of Mn in P fixation through comparing with Al and Fe. Hydroxides and oxides of Al, Fe and Mn were prepared in lab under opened and closed conditions to react with phosph...An experiment was conducted to examine the role of Mn in P fixation through comparing with Al and Fe. Hydroxides and oxides of Al, Fe and Mn were prepared in lab under opened and closed conditions to react with phosphate. The newly formed Mn hydroxide showed the strongest P-fixing abilityl even several times higher than Fe hydroxide, but became the lowest rapidly due to ageing when exposed to air. Mn oxide showed the lowest p-fixing ability. Therefore, a sound consideration on P fixation should be based on both quantities and p-fixing abilities of the compounds of Fe, Al and Mn. The importance of Mn on P availability should receive more attention especially under oxidation-reduction dynamic conditions.展开更多
A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a...A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a thickness of20nm.The galvanostatic charge-discharge test of the CoAl-LDH/CSs composite shows a great specific capacitance of1198F/g at1A/g(based on the mass of the CoAl-LDH/CSs composite)in6mol/L KOH solution,and the composite displays an impressive specificcapacitance of920F/g even at a high current density of10A/g.Moreover,the composite remains a specific capacitance of928F/gafter1000cycles at2A/g,and the specific capacitance retention is84%,indicating that the composite has high specific capacitance,excellent rate capability and good cycling stability in comparison to pristine CoAl-LDH.展开更多
Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC el...Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC electronic current passed through the catalyst bed. The promoting effects of current on the bio-oil reforming were studied. It was found that the performance of the bio-oil reforming was remarkably enhanced by the current which passed through the catalyst. The effects of currents on the microcosmic properties of the catalyst, including the Brunauer-Emmett-Teller (BET) surface area, pore diameter, pore volume, the size of the crystallites and the reduction level of NiO into Ni, were carefully characterized by BET, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The desorption of the thermal electrons from the electrified catalyst was directly observed by the TOF (time of flight) measurements. The mechanism of the electrochemical catalytic reforming of bio-oil is discussed based on the above investigation.展开更多
The influence of interlayer anions such as NO3-, 5042- and Cl- on Mg-AI hydrotalcites for Cr(Vl) removal from aqueous solution was studied. The structure of the prepared LDHs was characterized by XRD, SEM, FTIR, TGA...The influence of interlayer anions such as NO3-, 5042- and Cl- on Mg-AI hydrotalcites for Cr(Vl) removal from aqueous solution was studied. The structure of the prepared LDHs was characterized by XRD, SEM, FTIR, TGA, BET surface area and pHzpc. The sorbent ability and sorption mechanisms were also investigated. The LDHs exhibit high removal for Cr(VI), and the sorbed amount depends on the nature of interlayer anion, which decreased in the following order: NO3- 〉 Cl 〉 SO42-, Nitrate-containing LDH reached a Cr(VI) sorption equilibrium within only 30 min. The effects of operating conditions, including initial concentration, solution pH, agitation time and sorbent amount have been studied in batch mode. The optimum conditions were observed at an initial concen- tration of 100 mg. L- 1, pH = 6, agitation time of 60 min and a sorbent dose of 2 g.L- 1. The equilibrium data were fitted to the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The Langmuir model was found to sufficiently describe the sorption process, offering a maximum sorption capacity of 71.91 mg-g 1. The sorp- tion kinetic follows pseudo-second-order reaction with high accuracy. Thermodynamic parameters suggested that the sorption process is spontaneous and endothermic in nature.展开更多
The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous s...The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous solutions. The materials synthesized in this work were characterized by chemical analysis, FT-IR (fourier transform infrared spectroscopy), XRD (X-ray powder diffraction) to confirm their properties. In order to investigate the optimum conditions for Cd(II) adsorption, the amount of Cd(ll) adsorbed by Zn-AI LDHs intercalated with EDTA (ZnAI-EDTA) under different conditions (i.e., adsorbent dosage, temperature and contact time) were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry). Adsorption isotherms of Cd(II) onto ZnA1-EDTA were measured at varying initial Cd concentrations (0.05 mg/L to 1 mg/L) under optimized conditions. The data were applied to Langmuir and Freundlich isotherms model, and well fitted by the Freundlich isotherms model. The pseudo-second-order kinetic model was more adequate to describe the kinetic in this case.展开更多
为克服活性炭磷吸附能力有限的问题,使用ZnCl_2、十六烷基三甲基氯化铵(CTAC)和Fe/Al(氢)氧化物纳米颗粒分别研究了物理结构法、表面活性剂法和载体法3种表面修饰方法对活性炭磷吸附能力的影响。实验发现,载体法为3种方法中最好的修饰...为克服活性炭磷吸附能力有限的问题,使用ZnCl_2、十六烷基三甲基氯化铵(CTAC)和Fe/Al(氢)氧化物纳米颗粒分别研究了物理结构法、表面活性剂法和载体法3种表面修饰方法对活性炭磷吸附能力的影响。实验发现,载体法为3种方法中最好的修饰方法。对载体法制备吸附剂的材料用量的比较发现,在Fe(Ⅲ)和Al(Ⅲ)摩尔比为9:1的条件下,把1.5 g活性炭加入到总浓度为1 mol·L^(-1)的200 m L Fe(Ⅲ)和Al(Ⅲ)混合溶液中,形成的纳米Fe/Al(氢)氧化物能够较好地利用活性炭表面,该复合材料1.5AC-Fe/Al在磷平衡浓度约为50 mg·L^(-1)时吸附量达到29.3 mg·g^(-1)。该材料表征结果表明,纳米Fe/Al(氢)氧化物颗粒被成功负载在活性炭表面。在酸性条件下,复合材料表面的—H^+和—OH_2^+所引起的静电吸附和配位交换是促进吸附带负电磷酸根离子的原因。展开更多
The influence of pH on the thixotropy of pure kaolinite suspension and magnesium aluminum hydroxide (Mg-Al-MMH)-kaolinite suspension was studied. The results show that the thixotropic type of pure kaolinite suspension...The influence of pH on the thixotropy of pure kaolinite suspension and magnesium aluminum hydroxide (Mg-Al-MMH)-kaolinite suspension was studied. The results show that the thixotropic type of pure kaolinite suspension was not affected by pH studied in the range of 3.60– 12.00. The thixotropic type of Mg-Al-MMH-kaolinite suspension with mass ratio (R) value of MMH to kaolinite 0.029 transformed from complex thixotropy into positive thixotropy with increasing of pH in the range of pH 3.83–12.00, and the type of thixotropy of Mg-Al-MMH-kaolinite suspension withR = 0.129 transformed from positive thixotropy into complex thixotropy with increasing of pH in the range of pH 3.70–11.96.展开更多
基金Project(20133718120003)supported by the Doctoral Program Foundation of State Education Ministry,ChinaProject(BS2013CL009)supported by the Scientific Research Foundation of Shandong for Outstanding Young Scientist,China+1 种基金Projects(13-1-4-217-jch,13-1-4-188-jch)supported by the Applied Basic Research Foundation of Qingdao,ChinaProject(2014TDJH104)supported by the SDUST Research Fund,China
文摘Mg Al-layered double hydroxides(LDH) coatings were fabricated by the in-situ hydrothermal treatment method on the AA5005 aluminum alloy.The characteristics of the coatings were investigated by XRD,FT-IR,SEM and EDS.The effect of the p H value of the solution on the formation of the LDH coatings was studied.The optimum p H value of the solution was 10.0.The corrosion resistance of the LDH coatings was studied using potentiodynamic polarization tests and electrochemical impedance spectrum(EIS).The results demonstrate that the LDH coatings,characterized by platelets vertically to the substrate surface possess excellent corrosion resistance.The influence of the hydrothermal crystallization time on the corrosion resistance was evaluated.Prolonging the crystallization time can increase the corrosion resistance of the obtained LDH coatings.The anticorrosion mechanism of the LDH coatings was discussed.
文摘An experiment was conducted to examine the role of Mn in P fixation through comparing with Al and Fe. Hydroxides and oxides of Al, Fe and Mn were prepared in lab under opened and closed conditions to react with phosphate. The newly formed Mn hydroxide showed the strongest P-fixing abilityl even several times higher than Fe hydroxide, but became the lowest rapidly due to ageing when exposed to air. Mn oxide showed the lowest p-fixing ability. Therefore, a sound consideration on P fixation should be based on both quantities and p-fixing abilities of the compounds of Fe, Al and Mn. The importance of Mn on P availability should receive more attention especially under oxidation-reduction dynamic conditions.
基金Project(21471162) supported by the National Natural Science Foundation of ChinaProject(2015H6016) supported by the Science and Technology Project of Fujian Province,China
文摘A new design route was presented to fabricate cobalt aluminum-layered double hydroxide(CoAl-LDH)thin layers whichgrow on carbon spheres(CSs)through a growth method.The CoAl-LDH thin layers consist of nanoflakes with a thickness of20nm.The galvanostatic charge-discharge test of the CoAl-LDH/CSs composite shows a great specific capacitance of1198F/g at1A/g(based on the mass of the CoAl-LDH/CSs composite)in6mol/L KOH solution,and the composite displays an impressive specificcapacitance of920F/g even at a high current density of10A/g.Moreover,the composite remains a specific capacitance of928F/gafter1000cycles at2A/g,and the specific capacitance retention is84%,indicating that the composite has high specific capacitance,excellent rate capability and good cycling stability in comparison to pristine CoAl-LDH.
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of China (No.2007CB210206), the National High Tech Research and Development Program (No.2006AA05Z118), the General Program of the National Natural Science Foundation of China (No.50772107), and the Green Agriculture Scientific Research Demonstration Program (No.2007-15).
文摘Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC electronic current passed through the catalyst bed. The promoting effects of current on the bio-oil reforming were studied. It was found that the performance of the bio-oil reforming was remarkably enhanced by the current which passed through the catalyst. The effects of currents on the microcosmic properties of the catalyst, including the Brunauer-Emmett-Teller (BET) surface area, pore diameter, pore volume, the size of the crystallites and the reduction level of NiO into Ni, were carefully characterized by BET, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The desorption of the thermal electrons from the electrified catalyst was directly observed by the TOF (time of flight) measurements. The mechanism of the electrochemical catalytic reforming of bio-oil is discussed based on the above investigation.
基金financially supported by both the department of Process Engineering and Chemistry of USTHB(Algiers)
文摘The influence of interlayer anions such as NO3-, 5042- and Cl- on Mg-AI hydrotalcites for Cr(Vl) removal from aqueous solution was studied. The structure of the prepared LDHs was characterized by XRD, SEM, FTIR, TGA, BET surface area and pHzpc. The sorbent ability and sorption mechanisms were also investigated. The LDHs exhibit high removal for Cr(VI), and the sorbed amount depends on the nature of interlayer anion, which decreased in the following order: NO3- 〉 Cl 〉 SO42-, Nitrate-containing LDH reached a Cr(VI) sorption equilibrium within only 30 min. The effects of operating conditions, including initial concentration, solution pH, agitation time and sorbent amount have been studied in batch mode. The optimum conditions were observed at an initial concen- tration of 100 mg. L- 1, pH = 6, agitation time of 60 min and a sorbent dose of 2 g.L- 1. The equilibrium data were fitted to the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The Langmuir model was found to sufficiently describe the sorption process, offering a maximum sorption capacity of 71.91 mg-g 1. The sorp- tion kinetic follows pseudo-second-order reaction with high accuracy. Thermodynamic parameters suggested that the sorption process is spontaneous and endothermic in nature.
文摘The hydrotalcite-like compound [Zn2AI(OH)6]NO3-mH20 (shorted as ZnAI-NO3) was intercalated with the chelating agent EDTA (ethylene diamine tetraacetic acid) by anion exchange to uptake cadmium ion from aqueous solutions. The materials synthesized in this work were characterized by chemical analysis, FT-IR (fourier transform infrared spectroscopy), XRD (X-ray powder diffraction) to confirm their properties. In order to investigate the optimum conditions for Cd(II) adsorption, the amount of Cd(ll) adsorbed by Zn-AI LDHs intercalated with EDTA (ZnAI-EDTA) under different conditions (i.e., adsorbent dosage, temperature and contact time) were determined by ICP-AES (inductively coupled plasma-atomic emission spectrometry). Adsorption isotherms of Cd(II) onto ZnA1-EDTA were measured at varying initial Cd concentrations (0.05 mg/L to 1 mg/L) under optimized conditions. The data were applied to Langmuir and Freundlich isotherms model, and well fitted by the Freundlich isotherms model. The pseudo-second-order kinetic model was more adequate to describe the kinetic in this case.
文摘为克服活性炭磷吸附能力有限的问题,使用ZnCl_2、十六烷基三甲基氯化铵(CTAC)和Fe/Al(氢)氧化物纳米颗粒分别研究了物理结构法、表面活性剂法和载体法3种表面修饰方法对活性炭磷吸附能力的影响。实验发现,载体法为3种方法中最好的修饰方法。对载体法制备吸附剂的材料用量的比较发现,在Fe(Ⅲ)和Al(Ⅲ)摩尔比为9:1的条件下,把1.5 g活性炭加入到总浓度为1 mol·L^(-1)的200 m L Fe(Ⅲ)和Al(Ⅲ)混合溶液中,形成的纳米Fe/Al(氢)氧化物能够较好地利用活性炭表面,该复合材料1.5AC-Fe/Al在磷平衡浓度约为50 mg·L^(-1)时吸附量达到29.3 mg·g^(-1)。该材料表征结果表明,纳米Fe/Al(氢)氧化物颗粒被成功负载在活性炭表面。在酸性条件下,复合材料表面的—H^+和—OH_2^+所引起的静电吸附和配位交换是促进吸附带负电磷酸根离子的原因。
基金the National Natural Science Foundation of China (Grant No. 29873026).
文摘The influence of pH on the thixotropy of pure kaolinite suspension and magnesium aluminum hydroxide (Mg-Al-MMH)-kaolinite suspension was studied. The results show that the thixotropic type of pure kaolinite suspension was not affected by pH studied in the range of 3.60– 12.00. The thixotropic type of Mg-Al-MMH-kaolinite suspension with mass ratio (R) value of MMH to kaolinite 0.029 transformed from complex thixotropy into positive thixotropy with increasing of pH in the range of pH 3.83–12.00, and the type of thixotropy of Mg-Al-MMH-kaolinite suspension withR = 0.129 transformed from positive thixotropy into complex thixotropy with increasing of pH in the range of pH 3.70–11.96.