A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetall...A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetallic compounds formed during heat treatments were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). TiAl3 was the only observed phase at the Ti/Al interface when Al foils were not consumed. After being annealed at 850 °C for 35 h, the microstructure was composed of α-Ti, α2-Ti3Al, γ-TiAl and TiAl2. A fully lamellar microstructure formed after annealing at 1350 °C. Most of the angles between the lamellar interface and the sheet plane are below 30°. Using thinner starting foils is favorable to produce sheets with fine microstructure.展开更多
Ti species have been deposited on low-voltage etched aluminum foils by a simple electrochemical method using a Ti anode as Ti source in a Ti-free I2-dissolved acetone solution. After annealing at 500-600℃ in air, an ...Ti species have been deposited on low-voltage etched aluminum foils by a simple electrochemical method using a Ti anode as Ti source in a Ti-free I2-dissolved acetone solution. After annealing at 500-600℃ in air, an Al2O3-TiO2 composite oxide film was formed on the surface of the etched aluminum foil by anodizing galvanostatically in an ammonium adipate solution. The effects of I2 concentration in the acetone solution, applied anode voltage, electrolysis time, and annealing temperature on the specific capacitance of the aluminum anode foils were investigated. The TiO2-deposited specimens prepared by applying a po-tential of 50V for 3 min in 2.5m MI2-added acetone solution followed by annealing at 550℃ after anodization exhibited the highest specific capacitance, with an enhancement of 22% compared with pure etched aluminum foil specimens. The electro-deposition process and the change of the anode voltage during the anodization were analyzed.展开更多
基金Project (50771041) supported by the National Natural Science Foundation of ChinaProject (05-0350) supported by the New Century Excellent Talents in University, China
文摘A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetallic compounds formed during heat treatments were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). TiAl3 was the only observed phase at the Ti/Al interface when Al foils were not consumed. After being annealed at 850 °C for 35 h, the microstructure was composed of α-Ti, α2-Ti3Al, γ-TiAl and TiAl2. A fully lamellar microstructure formed after annealing at 1350 °C. Most of the angles between the lamellar interface and the sheet plane are below 30°. Using thinner starting foils is favorable to produce sheets with fine microstructure.
基金supported by the National Natural Science Foundation of China (21021002 & 51072170)
文摘Ti species have been deposited on low-voltage etched aluminum foils by a simple electrochemical method using a Ti anode as Ti source in a Ti-free I2-dissolved acetone solution. After annealing at 500-600℃ in air, an Al2O3-TiO2 composite oxide film was formed on the surface of the etched aluminum foil by anodizing galvanostatically in an ammonium adipate solution. The effects of I2 concentration in the acetone solution, applied anode voltage, electrolysis time, and annealing temperature on the specific capacitance of the aluminum anode foils were investigated. The TiO2-deposited specimens prepared by applying a po-tential of 50V for 3 min in 2.5m MI2-added acetone solution followed by annealing at 550℃ after anodization exhibited the highest specific capacitance, with an enhancement of 22% compared with pure etched aluminum foil specimens. The electro-deposition process and the change of the anode voltage during the anodization were analyzed.