Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and in...Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and intermetallic phases of the coatings were characterized by SEM,EDS and EBSD.A network of Cr2Al13 with matrix of Fe4Al13 was formed by inter-diffusing of Al with the substrates.The corrosion behavior of intermetallic coatings was investigated in 0.5 mol/L HCl solution by mass-loss,OCP,Tafel plot and EIS.It was found that corrosion resistance was greatly enhanced by dozens of times after the addition of Cr and Ni compared with that on pure Fe.The presence of cracks in the coating on 430-SS provided a pathway for corrosion media to penetrate to the substrate and accelerated the corrosion rate.Moreover,the corrosion product was analyzed by XRD,demonstrating that the addition of Cr and Ni facilitated the formation of more corrosion resistant phases,and therefore improved corrosion resistance.展开更多
Friction welding (FW) is a process of solid state joining which is used extensively in recent years due to its advantages such as low heat input,production efficiency,ease of manufacture and environment friendliness...Friction welding (FW) is a process of solid state joining which is used extensively in recent years due to its advantages such as low heat input,production efficiency,ease of manufacture and environment friendliness.Friction welding can be used to join different types of ferrous metals and non-ferrous metals that cannot be welded by traditional fusion welding processes.The process parameters such as friction pressure,forging force,friction time and forging time play the major roles in determining the strength of the joints.In this investigation an attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AA 6082 aluminium alloy and AISI 304 austenitic stainless steels joints,incorporating above said parameters.Response surface methodology (RSM) was applied to optimizing the friction welding process parameters to attain the maximum tensile strength of the joint.展开更多
Stainless steel(SS)grade 316L is used for orthopedic implants due to its biocompatibility;yet the effort should be done to minimize the carcinogenic and inflammatory effects related to SS 316L implants.In this researc...Stainless steel(SS)grade 316L is used for orthopedic implants due to its biocompatibility;yet the effort should be done to minimize the carcinogenic and inflammatory effects related to SS 316L implants.In this research,aluminide coating of Al–Si alloy on SS 316L is characterized by using optical microscopy,energy dispersive spectroscopy(EDS),nano-indentation and corrosion testing technique.Hot dip aluminizing process is used to coat the SS 316L specimens at 765°C for 2 min immersion time.Half of the specimens are also diffusion treated in a Muffle furnace at 550°C for 4 h to produce diffused specimens of SS 316L.Microstructural examination shows the formation of flat coating/substrate interface due to Si addition.EDS analysis confirms the formation of complex intermetallic at the coating/substrate interface which finally results in increasing the hardness and corrosion resistance properties of coating.展开更多
Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate ...Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8.展开更多
Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetall...Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetallic compounds at the interface of three series of samples were analyzed and compared.Depending on the Si content,a variety of ternary Al-Fe-Si intermetallic compounds(IMCs) such as Fe_(4)(Al,Si)_(13),Fe_(2) Al_(8) Si(τ_(5)),and Fe_(2) Al_(9) Si_(2)(τ_(6)) were formed at the interface.Mg element in 5356 filler material cannot contribute to the formation of Al-Fe intermetallic phases due to the positive mixing enthalpy of Mg-Fe.The presence of Mg enhances the hot cracking phenomenon near the Al-Fe intermetallic compound at the interface.Zn coating does not participate in intermetallic formation due to its evaporation during WB.It was concluded that the softening of the base metal in the heat-affected zone rather than the IMCs determines the joint efficiency.展开更多
Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 6...Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.展开更多
The effects of acid-soluble Al content on the physical and chemical performances of high Al steels were investigated. The results show that the distribution of acid-soluble Al in steel substrate is uniform. With incre...The effects of acid-soluble Al content on the physical and chemical performances of high Al steels were investigated. The results show that the distribution of acid-soluble Al in steel substrate is uniform. With increasing Al content, the strength and toughness of steels decrease a little but the hardness increases. The average yield strength and tensile strength are 425MPa and 570MPa, respectively, and the Rockwell hardness is 89.7. For non-Al steels the average oxidation rate is up to 0.421mg/(cm2·h) at 1373K. For high Al steels, when the mass fraction of Al is less than 5%, there is a thinner gray oxidized layer on surface and the oxidation rate is high; when the mass fraction of Al is more than 8.0%, the thin, close and yellow glossing film still exists, and the average oxidation rate is only 0.016mg/(cm2·h).展开更多
A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/s...A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.展开更多
FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack alumini...FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack aluminization technique had excellent adhesion and was conductive enough to permit conditions favorable for the precipitation of alumina oxyhydroxide during aluminum diffusion coatings. In this work, the bed was prepared as a mixture of A1, NH4C1 and A1203. In the high-activity bed were heat-treated at 1,173 K in an atmosphere made up of team with subsequent air-cooling. The effect of the bed content on the coating was examined. With the high-activity, the desired Fe2Al5 was formed as the outermost coating layer. The coating presented chemical composition gradients suitable for strong adhesion. The improvement of the thermal oxidation behaviour was studied at 1,373 K. Two different aqueous environments, which are (1) NaC1 and (2) H2SO4, are employed for using the technique of potentiodynamic polarization curve. The obtained experimental electrochemical parameters (Ecorr, Jcorr etc,) were used to compare the corrosion resistance of the tested steel state complemented by MEB (electronic scanning microscopy) in combination with dispersive analysis X in energy (EDS) or X ray diffraction indicated that the elements concentration maximum was located in the vicinity of the interface especially in the FeCrAI (Ce) coated by spherical A1203 powder. These results an discussed in terms of an addition effect on the development of the microstructure of oxide films.展开更多
Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test ...Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.展开更多
基金Projects(51501089,55104012) supported by the National Natural Science Foundation of ChinaProjects(BK20130945,BK20130914) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project supported by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution,ChinaProject supported by Nanjing Tech University,China
文摘Two Fe-Al-based intermetallic aluminide coatings were fabricated on 430-SS(Fe-Cr)and 304-SS(Fe-Cr-Ni)substrates by pressure-assisted solid diffusion bonding with coating on pure Fe as control.The microstructure and intermetallic phases of the coatings were characterized by SEM,EDS and EBSD.A network of Cr2Al13 with matrix of Fe4Al13 was formed by inter-diffusing of Al with the substrates.The corrosion behavior of intermetallic coatings was investigated in 0.5 mol/L HCl solution by mass-loss,OCP,Tafel plot and EIS.It was found that corrosion resistance was greatly enhanced by dozens of times after the addition of Cr and Ni compared with that on pure Fe.The presence of cracks in the coating on 430-SS provided a pathway for corrosion media to penetrate to the substrate and accelerated the corrosion rate.Moreover,the corrosion product was analyzed by XRD,demonstrating that the addition of Cr and Ni facilitated the formation of more corrosion resistant phases,and therefore improved corrosion resistance.
文摘Friction welding (FW) is a process of solid state joining which is used extensively in recent years due to its advantages such as low heat input,production efficiency,ease of manufacture and environment friendliness.Friction welding can be used to join different types of ferrous metals and non-ferrous metals that cannot be welded by traditional fusion welding processes.The process parameters such as friction pressure,forging force,friction time and forging time play the major roles in determining the strength of the joints.In this investigation an attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AA 6082 aluminium alloy and AISI 304 austenitic stainless steels joints,incorporating above said parameters.Response surface methodology (RSM) was applied to optimizing the friction welding process parameters to attain the maximum tensile strength of the joint.
基金sponsored and funded by Metallurgy and Materials Engineering Department,College of Engineering and Emerging Technologies, University of the Punjab (grant no.PU/ASR&TD/ RG-348 dated 26-1-2012)
文摘Stainless steel(SS)grade 316L is used for orthopedic implants due to its biocompatibility;yet the effort should be done to minimize the carcinogenic and inflammatory effects related to SS 316L implants.In this research,aluminide coating of Al–Si alloy on SS 316L is characterized by using optical microscopy,energy dispersive spectroscopy(EDS),nano-indentation and corrosion testing technique.Hot dip aluminizing process is used to coat the SS 316L specimens at 765°C for 2 min immersion time.Half of the specimens are also diffusion treated in a Muffle furnace at 550°C for 4 h to produce diffused specimens of SS 316L.Microstructural examination shows the formation of flat coating/substrate interface due to Si addition.EDS analysis confirms the formation of complex intermetallic at the coating/substrate interface which finally results in increasing the hardness and corrosion resistance properties of coating.
文摘Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8.
基金Project(97.13966(97.11.15)) supported by the Deputy of Research and Technology of Arak University,Iran。
文摘Commercial pure aluminum and galvanized carbon steel were lap-welded using the weld-brazing(WB)technique.Three types of aluminum filler materials(4043,4047,and 5356) were used for WB.The joint strength and intermetallic compounds at the interface of three series of samples were analyzed and compared.Depending on the Si content,a variety of ternary Al-Fe-Si intermetallic compounds(IMCs) such as Fe_(4)(Al,Si)_(13),Fe_(2) Al_(8) Si(τ_(5)),and Fe_(2) Al_(9) Si_(2)(τ_(6)) were formed at the interface.Mg element in 5356 filler material cannot contribute to the formation of Al-Fe intermetallic phases due to the positive mixing enthalpy of Mg-Fe.The presence of Mg enhances the hot cracking phenomenon near the Al-Fe intermetallic compound at the interface.Zn coating does not participate in intermetallic formation due to its evaporation during WB.It was concluded that the softening of the base metal in the heat-affected zone rather than the IMCs determines the joint efficiency.
基金Project(2009ZM0296) supported by the Fundamental Research Funds for the Central Universities in China
文摘Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.
文摘The effects of acid-soluble Al content on the physical and chemical performances of high Al steels were investigated. The results show that the distribution of acid-soluble Al in steel substrate is uniform. With increasing Al content, the strength and toughness of steels decrease a little but the hardness increases. The average yield strength and tensile strength are 425MPa and 570MPa, respectively, and the Rockwell hardness is 89.7. For non-Al steels the average oxidation rate is up to 0.421mg/(cm2·h) at 1373K. For high Al steels, when the mass fraction of Al is less than 5%, there is a thinner gray oxidized layer on surface and the oxidation rate is high; when the mass fraction of Al is more than 8.0%, the thin, close and yellow glossing film still exists, and the average oxidation rate is only 0.016mg/(cm2·h).
基金Project(51271080) supported by the National Natural Science Foundation of ChinaProject(2012JSSPITP1968) supported by the Innovative Foundation for Students of Jiangsu Province,ChinaProject(CKJB201204) supported by the Innovation Fund of Nanjing Institute of Technology,China
文摘A new style Ni-containing alumina ceramic foam based continuous three-dimensional interconnected skeleton was prepared by impregnating a polymeric sponge with aqueous ceramic slurry.Subsequently,alumina ceramic foam/steel metal matrix composites(MMCs) were prepared successfully by sand mold casting technique.The microstructure and mechanical properties of MMCs were investigated by SEM,EDS and compressive test.The results show that the depth of infiltration is about 40 μm to the bonding interface of ceramic/steel and the fracture strength σmax and plastic strain limit εp of composite are 520 MPa and 11.2%,respectively.The fretting wear mechanism of MMCs is mainly performed at the oxidative wear mode with lower load/friction frequency and the predominant oxidation wear together with slight adhesive wear and abrasive wear multiple mode with higher load/ friction frequency.Moreover,the infiltration bonding and continuous three-dimensional interconnected ceramic skeleton play a vital role in the stability of the bonding interface and excellent mechanical properties.
文摘FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack aluminization technique had excellent adhesion and was conductive enough to permit conditions favorable for the precipitation of alumina oxyhydroxide during aluminum diffusion coatings. In this work, the bed was prepared as a mixture of A1, NH4C1 and A1203. In the high-activity bed were heat-treated at 1,173 K in an atmosphere made up of team with subsequent air-cooling. The effect of the bed content on the coating was examined. With the high-activity, the desired Fe2Al5 was formed as the outermost coating layer. The coating presented chemical composition gradients suitable for strong adhesion. The improvement of the thermal oxidation behaviour was studied at 1,373 K. Two different aqueous environments, which are (1) NaC1 and (2) H2SO4, are employed for using the technique of potentiodynamic polarization curve. The obtained experimental electrochemical parameters (Ecorr, Jcorr etc,) were used to compare the corrosion resistance of the tested steel state complemented by MEB (electronic scanning microscopy) in combination with dispersive analysis X in energy (EDS) or X ray diffraction indicated that the elements concentration maximum was located in the vicinity of the interface especially in the FeCrAI (Ce) coated by spherical A1203 powder. These results an discussed in terms of an addition effect on the development of the microstructure of oxide films.
基金Supported by Shandong Science and Technology Key Projects (No2007GG30003004)
文摘Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200 ℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr203, α-Al2O3, SiO2 and Fe (Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200 ℃. Its oxidation weight gain rate is only 0.081 g/(m^2.h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.