In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures...In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.展开更多
Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated a...Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated and are taken as the basis for theoretically simulating the bearing fatigue process. It is found that the calculated results are in good accordance with the experimental results, which provides a feasible way for investigation of fatigue crack propagation process in the bearing.展开更多
To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of ...To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of the deviator stress J2 and Lode's coefficient μ were employed for the division of deformation area. The results show that when the metal is extruded with the guiding angle,no metal flow interface forms at the container's bottom,the dead zone completely disappears,the deformation types of the metal in the plastic deformation area change from three types to one type of tension,and the homogeneity of the deformation as well as metal flow are greatly improved. The non-homogeneous metal flow at the final stage of extrusion is improved,reducing the shrinkage hole at the axis end. The radial stress of the furthest point from the axis is transformed from tensile stress to compressive stress and the axial stress,and decreased from 70.8 to 34.8 MPa. Therefore,the surface cracks caused by additional stress are greatly reduced.展开更多
A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ alumin- ium alloy. The loading paths of 90° out-of-phase, 45° out-of-phase and 45° in-p...A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ alumin- ium alloy. The loading paths of 90° out-of-phase, 45° out-of-phase and 45° in-phase are utilized. The fatigue damage cumulative rules under two-level step loading of three loading paths are analyzed. By introducing a parameter a which is a function of the phase lag angle between the axial and the torsional loading, a new multiaxial nonlinear fatigue damage cumulative model is proposed. The proposed model is evaluated by the experimental aluminium alloy, and multi-level loading of 45 steel. Fatigue lives data for two-level loading, multi-level loading of LY12CZ predicted are within a factor of 2 scatter band.展开更多
基金Project(52071343)supported by the National Natural Science Foundation of China。
文摘In this study,the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion(LPBF).The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles(0°,30°,45°,60°and 90°)were reported and discussed.It is found that the“semicircular”melt pool(MP)in the load bearing face of 0°sample was eventually transformed into“stripe-like”MP in the 90°sample,accompanied by an increased fraction of melt pool boundaries(MPBs).Moreover,the microstructural analysis revealed that the columnar-to-equiaxed transition(CET)of theα-Al grains and eutectic Mg2Si was completed in the 90°sample,which were significantly refined with the average size of 10.6μm and 0.44μm,respectively.It is also found that the 90°sample exhibited good combination of strength and elongation(i.e.yield strength of 393 MPa,ultimate tensile strength of 483 MPa and elongation of 8.1%).The anisotropic mechanical properties were highly associated with the refined microstructures,thermal stress,and density of MPBs.Additionally,the CET driven by inclination angles was attributed to the variation of thermal conditions inside the local MPs.
基金This paper is financially supported by Trans Century Training Programme Foundation for the Talents by the State Education Commission,PR China.
文摘Observation of fatigue crack initiation and propagation during fatigue test in ALSn20Cu bearing has been presented. Journal center orbit, oil film pressure and stress distribution in alloy layer have been calculated and are taken as the basis for theoretically simulating the bearing fatigue process. It is found that the calculated results are in good accordance with the experimental results, which provides a feasible way for investigation of fatigue crack propagation process in the bearing.
基金Project(RC2010QN017008) supported by the Excellent Young Teachers Program of Harbin City, China
文摘To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of the deviator stress J2 and Lode's coefficient μ were employed for the division of deformation area. The results show that when the metal is extruded with the guiding angle,no metal flow interface forms at the container's bottom,the dead zone completely disappears,the deformation types of the metal in the plastic deformation area change from three types to one type of tension,and the homogeneity of the deformation as well as metal flow are greatly improved. The non-homogeneous metal flow at the final stage of extrusion is improved,reducing the shrinkage hole at the axis end. The radial stress of the furthest point from the axis is transformed from tensile stress to compressive stress and the axial stress,and decreased from 70.8 to 34.8 MPa. Therefore,the surface cracks caused by additional stress are greatly reduced.
基金supported by the National Natural Science Foundation of China(Grant No.10702027)Aviation Science Funds of China(Grant No.2011ZA52016)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.Irt0906)
文摘A series of biaxial two-level variable amplitude loading tests are conducted on smooth tubular specimens of LY12CZ alumin- ium alloy. The loading paths of 90° out-of-phase, 45° out-of-phase and 45° in-phase are utilized. The fatigue damage cumulative rules under two-level step loading of three loading paths are analyzed. By introducing a parameter a which is a function of the phase lag angle between the axial and the torsional loading, a new multiaxial nonlinear fatigue damage cumulative model is proposed. The proposed model is evaluated by the experimental aluminium alloy, and multi-level loading of 45 steel. Fatigue lives data for two-level loading, multi-level loading of LY12CZ predicted are within a factor of 2 scatter band.