Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu int...Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of IMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study.展开更多
Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The u...Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.展开更多
文摘Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of IMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study.
基金Projects(51075104,50975054) supported by the National Natural Science Foundation of ChinaProject(2010RFQXG020) supported by the Harbin Excellence Talents Program,China
文摘Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.