Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were ...Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were analyzed by comparing with traditional cast-rolling. Results show that when length of cast-rolling area is 70 mm, melt temperature of head box is 670 °C, cast rolling speed is 1.3 m/min, exciting current is 10 A, center frequency is(13±1) Hz, ultrasonic power is 200 W and ultrasonic frequency is(20±0.2) kHz, the 1050 strip with the best microstructure can be prepared successfully; its center segregated layer disappears; the average grain size is reduced by about 40%; the crystal grains are distributed evenly; micro segregation decreases obviously; the precipitated phases are distributed along the grain boundaries evenly; and the tensile strength, yield strength, elongation and micro-hardness of cast-rolled strip are improved by 22.6%, 23.66%, 38.75% and 9.90%, respectively.展开更多
Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sou...Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sound surface slab of 8.90 mm thick and 1260 mm wide was cast by a 15°; tilt back twin roll caster at a casting speed of 490 mm/min. After homogenization at 520 ℃, the product was cold rolled to two thicknesses of 6.30 mm and 3.85 mm with an intermediate annealing at 370 ℃ and final stabilization at 180 ℃. Opticalmicroscopyand scanning electron microscopy (SEM) investigations of the as-cast state depicted the segregation of intermetallic particles mainly in grain boundaries which wasthe cause of grain removal observed in the fracture surface of tensile test samples. In addition, mechanical properties indicated an increase in total elongation after homogenization heat treatment dueto the elimination of the grain boundary segregations. Finally, it was observed that the properties of the 3.85 mmthick sheet were consistent with the H321 temper requirements according to ASTM B 290M standard due to applying sufficient cold reduction during cold rolling stage.展开更多
To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm ...To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.展开更多
The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investiga...The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.展开更多
基金Project(2014CB046702)supported by National Basic Research Program of China
文摘Technological parameters of asymmetric cast-rolling under multi-energy field were investigated on horizontal twin roll caster(d400 mm×500 mm), and their effects on structures and properties of 1050 strips were analyzed by comparing with traditional cast-rolling. Results show that when length of cast-rolling area is 70 mm, melt temperature of head box is 670 °C, cast rolling speed is 1.3 m/min, exciting current is 10 A, center frequency is(13±1) Hz, ultrasonic power is 200 W and ultrasonic frequency is(20±0.2) kHz, the 1050 strip with the best microstructure can be prepared successfully; its center segregated layer disappears; the average grain size is reduced by about 40%; the crystal grains are distributed evenly; micro segregation decreases obviously; the precipitated phases are distributed along the grain boundaries evenly; and the tensile strength, yield strength, elongation and micro-hardness of cast-rolled strip are improved by 22.6%, 23.66%, 38.75% and 9.90%, respectively.
文摘Thepurpose of the present paper is to study the mechanical propertiesand microstructureof the twin-roll cast and cold rolled AA5083 aluminum alloy sheet in strain-hardened H321 temper. To reach this goal, first, a sound surface slab of 8.90 mm thick and 1260 mm wide was cast by a 15°; tilt back twin roll caster at a casting speed of 490 mm/min. After homogenization at 520 ℃, the product was cold rolled to two thicknesses of 6.30 mm and 3.85 mm with an intermediate annealing at 370 ℃ and final stabilization at 180 ℃. Opticalmicroscopyand scanning electron microscopy (SEM) investigations of the as-cast state depicted the segregation of intermetallic particles mainly in grain boundaries which wasthe cause of grain removal observed in the fracture surface of tensile test samples. In addition, mechanical properties indicated an increase in total elongation after homogenization heat treatment dueto the elimination of the grain boundary segregations. Finally, it was observed that the properties of the 3.85 mmthick sheet were consistent with the H321 temper requirements according to ASTM B 290M standard due to applying sufficient cold reduction during cold rolling stage.
基金Project(51504060) supported by the National Natural Science Foundation of ChinaProjects(2016YFB0301201,2016YFB0300603) supported by the National Key Research and Development Program of ChinaProject(N160713001) supported by the Fundamental Research Funds for the Central Universities,China
文摘To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure.
文摘The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.