In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, whi...In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.展开更多
基金Supported by the Henan Outstanding Youth Science Fund (0612002400)
文摘In order to improve the activity and eliminate some impurities, pretreatment was used before hydrothermal synthesis. The fly ash was mixed with an aqueous NaOH solution, the alkali melted fly ash was also adopted, which is hydrothermally treated at about 104 ℃, and the liquid/solid ratio was controlled at 6:1. In order to control Si/Al molar ratio, SiO2 or Al2O3 powers were added to the fly ash. The results of XRD and SEM show that the alkali melted can activate fly ash and eliminate its quartz and mullite, along with the improvement of Si/Al molar ratio and alkalinity. In addition, zeolite Na-A changes into sodalite gradually, and nepheline is the synthesized intermediate product. Those results were discussed on the basis of a formation mechanism of zeolite from fly ash.