A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use...A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.展开更多
The ambient electrical conductivity (AEC) of carbon cathode materials was investigated in respect to their open porosity, crystal structure and graphite content using hydrostatic method, four-probe technique and X-ray...The ambient electrical conductivity (AEC) of carbon cathode materials was investigated in respect to their open porosity, crystal structure and graphite content using hydrostatic method, four-probe technique and X-ray diffraction (XRD), respectively. The AEC is proportional to the specific conductivity (σ0) and the exponential of (1?ε) (ε is porosity) by a quasi-uniform formula based on the percolation theory. Theσ0 can reflect the intrinsic conductivity of the carbon cathodes free of pores, and it depends on the mean crystallite size parallel to the layer (002). The exponentn is dependent on the materials nature of the cathode aggregates, while an averaged value, 4.65, can practically work well with 5 types of cathode materials. The calculation ofσ0 can be extended to the graphitic cathodes containing different aggregates using the simple rule of mixture.展开更多
A method to investigate the effect of gas bubble on cell voltage oscillations was established. The whole aluminum electrolysis cell was treated as a resistance circuit, and the dynamic simulation of the cell equivalen...A method to investigate the effect of gas bubble on cell voltage oscillations was established. The whole aluminum electrolysis cell was treated as a resistance circuit, and the dynamic simulation of the cell equivalent circuit was modeled with Matlab/Simulink simulation software. The time-series signals of cell voltage and anode current were obtained under different bubble conditions, and analyzed by spectral and statistical analysis methods. The simulation results show that higher bubble release frequency has a significant effect on the cell voltage oscillations. When the bubble coverage of one anode block exceeds 80%, the cell voltage may exceed its normal fluctuation amplitude. The simulation also proves that the anode effect detected by computer in actual production is mainly the whole cell anode effect.展开更多
The Box–Behnken design and desirability approach were used to investigate and optimize the process parameters for aluminum reduction cells related to alumina dissolution. The bath temperature, alumina content, curren...The Box–Behnken design and desirability approach were used to investigate and optimize the process parameters for aluminum reduction cells related to alumina dissolution. The bath temperature, alumina content, current and alumina temperature were chosen as the design parameters. The content of cumulative dissolved alumina(CCDA) and the relative deviation from the target content(RDTC) were adopted as the responses. The interactive influence results show that increasing the bath temperature and alumina temperature, as well as decreasing the alumina content, can increase CCDA. Increasing the bath temperature and lowering the current are beneficial for obtaining a more uniform alumina distribution. The optimal operating parameters were determined to be as follows: bath temperature of 958.8 ℃, alumina content of 2.679 wt.%, current of 300 kA and alumina temperature of 200 ℃.展开更多
Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanid...Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.展开更多
Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag comp...Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag component. The experimental results show that the carbonaceous component of the SPL is more reactive towards chromite reduction compared to graphite. The formation of refractory spinel (MgAl2O4) on chromite particles hinders further reduction and alloy growth. The slag-making components of the SPL (e.g. nepheline and NaF) form molten slags at low temperatures (~1300℃) and partly dissolve the refractory spinel as well as the chromite. Destruction of the spinel layer with enhanced mass transfer greatly improves the alloy growth, which can be further promoted by reduction at a higher temperature (e.g. 1500℃). Ferrochrome alloy particles grow large enough at 1500℃ in the presence of SPL, allowing effective separation from the slag component using elutriation separation.展开更多
Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a c...Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a cathode block.Thermal stress field was calculated by the other slice model of the cell at the end of the heating-up.Then stresses coupling thermal and sodium expansion were considered after 30 d start-up.The results indicate that sodium penetrates to the bottom of the cathode block after 30 d start-up.The semi-graphitic carbon block has the largest stress at the thermal stage.After 30 d start-up the anthracitic carbon has the greatest sodium expansion stress and the graphitized carbon has the lowest sodium expansion stress.Sodium penetration can cause larger deformation and stress in the cathode carbon block than thermal expansion.展开更多
Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,numbe...Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,number of cathode bars connected to each riser,vertical location of side cathode busbar and short side cathode busbar,distance between rows of cells in potline,the number of neighboring cells,ratio of compensation busbar carried passing under cell and its horizontal location under cell along with large magnetohydrodynamic(MHD) computation based on the custom evaluation function were simulated and discussed.The results show that a cell with riser entry ratio of 11:9:8:9:11 and cathode busbar located at the level of aluminum solution,50% upstream cathode current passing under cell for magnetic field compensation,the distance between rows of 50 m is more stable.展开更多
Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte me...Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.展开更多
A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line s...A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.展开更多
Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simu...Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.展开更多
A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The inf...A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.展开更多
The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes w...The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes was induced respectively to insure that the current in local group of flexes was equal. Furthermore, a 350 kA aluminum reduction cell based electric field model was developed by finite element method to evaluate the effect of the method. Suggestions on selection of three modes were also put forward. The results show that the methods of resistance optimization can reduce the current variation about 180 A compared with that in original case.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring th...A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring the total amount of oxygen evolved at the anode and was found to be ~ 95%. The influence of operating parameters (inter-elec- trode distance, temperature and current density) was evaluated. The quantitative interdependencies as well as the ranges of CE optima[ values were established (2-3 cm, 940-960 ℃ and 0.7-0.8 A.cm 2). The corrosion process of these anodes was evaluated by the mass loss method. The evaluation also took care of the corrosion data, as the prob- lem of the anode corrosion appeared to be the main obstacle for the use of those anodes in the commercial cells.Low-ering of the ACD up to 2 cm did not aggravate anode corrosion.展开更多
To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure p...To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.展开更多
A transient three-dimensional(3 D) model was established to understand the bubble motion in an industrial electrolytic process. An anode with a new design was tested. It incorporates two slots that allow an efficien...A transient three-dimensional(3 D) model was established to understand the bubble motion in an industrial electrolytic process. An anode with a new design was tested. It incorporates two slots that allow an efficient removal of gas bubbles. The electromagnetic fields were described by solving Maxwell's equations. The bubble movement was studied with two-way coupling Euler-Lagrange approach. The interplay of current density and bubble nucleation rate was included. The collision and coalescence of bubbles were considered. Random walk module was invoked for involving the chaotic effect of the turbulence. The numerical results were validated by experimental measurements. The results indicate that the current distribution and the bubble nucleation periodically change. Due to the slot, the bubble elimination heavily increases. The contribution of the slot to the bubble removal exceeds 50% in the case of three currents, and the promotion of the slot decays with increasing the current.展开更多
The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equ...The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimised to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.展开更多
基金Project(2010AA065201)supported by the High-tech Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited
文摘A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.
基金Project(20110006110003)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(51434005)supported by the National Natural Science Foundation of China
文摘The ambient electrical conductivity (AEC) of carbon cathode materials was investigated in respect to their open porosity, crystal structure and graphite content using hydrostatic method, four-probe technique and X-ray diffraction (XRD), respectively. The AEC is proportional to the specific conductivity (σ0) and the exponential of (1?ε) (ε is porosity) by a quasi-uniform formula based on the percolation theory. Theσ0 can reflect the intrinsic conductivity of the carbon cathodes free of pores, and it depends on the mean crystallite size parallel to the layer (002). The exponentn is dependent on the materials nature of the cathode aggregates, while an averaged value, 4.65, can practically work well with 5 types of cathode materials. The calculation ofσ0 can be extended to the graphitic cathodes containing different aggregates using the simple rule of mixture.
基金Project(2012BAE08B09)supported by the National Key Technology R&D Program of China
文摘A method to investigate the effect of gas bubble on cell voltage oscillations was established. The whole aluminum electrolysis cell was treated as a resistance circuit, and the dynamic simulation of the cell equivalent circuit was modeled with Matlab/Simulink simulation software. The time-series signals of cell voltage and anode current were obtained under different bubble conditions, and analyzed by spectral and statistical analysis methods. The simulation results show that higher bubble release frequency has a significant effect on the cell voltage oscillations. When the bubble coverage of one anode block exceeds 80%, the cell voltage may exceed its normal fluctuation amplitude. The simulation also proves that the anode effect detected by computer in actual production is mainly the whole cell anode effect.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2018zzts157)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘The Box–Behnken design and desirability approach were used to investigate and optimize the process parameters for aluminum reduction cells related to alumina dissolution. The bath temperature, alumina content, current and alumina temperature were chosen as the design parameters. The content of cumulative dissolved alumina(CCDA) and the relative deviation from the target content(RDTC) were adopted as the responses. The interactive influence results show that increasing the bath temperature and alumina temperature, as well as decreasing the alumina content, can increase CCDA. Increasing the bath temperature and lowering the current are beneficial for obtaining a more uniform alumina distribution. The optimal operating parameters were determined to be as follows: bath temperature of 958.8 ℃, alumina content of 2.679 wt.%, current of 300 kA and alumina temperature of 200 ℃.
基金Project(2019YFC1908400)supported by the National Key Research and Development Program of ChinaProject(2018BDE02050)supported by the Key Research and Development Program of Ningxia Hui Autonomous Region,China+1 种基金Project(2302018FRF-TP-18-095A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2018-XY-14)supported by the Special Funds for Scientific and Technological Consultation of Academicians,China。
文摘Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.
基金funded by NRCan under the Rare Earth Elements and Chromite R&D Program
文摘Aluminum spent potlining (SPL) was employed as both the fluxing agent and a source of carbonaceous reductant for the carbothermic reduction of chromite, aiming to allow effective separation of alloy from the slag component. The experimental results show that the carbonaceous component of the SPL is more reactive towards chromite reduction compared to graphite. The formation of refractory spinel (MgAl2O4) on chromite particles hinders further reduction and alloy growth. The slag-making components of the SPL (e.g. nepheline and NaF) form molten slags at low temperatures (~1300℃) and partly dissolve the refractory spinel as well as the chromite. Destruction of the spinel layer with enhanced mass transfer greatly improves the alloy growth, which can be further promoted by reduction at a higher temperature (e.g. 1500℃). Ferrochrome alloy particles grow large enough at 1500℃ in the presence of SPL, allowing effective separation from the slag component using elutriation separation.
基金Project(50374081) supported by the National Natural Science Foundation of China
文摘Two finite element(FE) models were built up for analysis of stress field in the lining of aluminum electrolysis cells.Distribution of sodium concentration in cathode carbon blocks was calculated by one FE model of a cathode block.Thermal stress field was calculated by the other slice model of the cell at the end of the heating-up.Then stresses coupling thermal and sodium expansion were considered after 30 d start-up.The results indicate that sodium penetrates to the bottom of the cathode block after 30 d start-up.The semi-graphitic carbon block has the largest stress at the thermal stage.After 30 d start-up the anthracitic carbon has the greatest sodium expansion stress and the graphitized carbon has the lowest sodium expansion stress.Sodium penetration can cause larger deformation and stress in the cathode carbon block than thermal expansion.
基金Project(20010533009) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘Various busbar configurations were built and modeled by the custom code based on the commercial package ANSYS for the 500 kA aluminum electrolysis cell.The configuration parameters,such as side riser entry ratio,number of cathode bars connected to each riser,vertical location of side cathode busbar and short side cathode busbar,distance between rows of cells in potline,the number of neighboring cells,ratio of compensation busbar carried passing under cell and its horizontal location under cell along with large magnetohydrodynamic(MHD) computation based on the custom evaluation function were simulated and discussed.The results show that a cell with riser entry ratio of 11:9:8:9:11 and cathode busbar located at the level of aluminum solution,50% upstream cathode current passing under cell for magnetic field compensation,the distance between rows of 50 m is more stable.
基金Project (G1999064903) supported by the National Key Fundamental Research and Development Programof China
文摘Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.
基金Project(61174018) supported by National Natural Science Foundation, ChinaProject(ZR2011FQ025) supported by the Natural Science Foundation of Shandong Province ChinaProject(2010GN066) supported by the Independent Innovation Foundation of Shandong University, China
文摘A fiber Bragg grating temperature sensor network was designed to implement the real-time health monitoring of the aluminum reduction cell. The heat transfer process was simulated using software ANSYS, and an on-line shell monitoring system was established based on optical sensing technology. According to aluminum reduction cell heat transfer theory, the 2D slice finite element model was developed. The relationship between shell temperature and cell status was discussed. Fiber Bragg grating (FBG) was chosen as the temperature sensor in light of its unique advantages. The accuracy of designed FBG temperature sensors exceeds 2 ~C, and good repeatability was exhibited. An interrogation system with 104 sensors based on VPG (volume phase grating) filter was established. Through the long-term monitoring on running state, the status of the aluminum reduction cell, including security and fatigue life could be acquired and estimated exactly. The obtained results provide the foundation for the production status monitoring and fault diagnosis. Long-term test results show good stability and repeatability which are compatible with electrolysis process.
基金Project(2005CB623703) supported by the National Basic Research Program of China
文摘Current distribution in a drained aluminum reduction cell is critical due to its influence on the current efficiency, electrolysis stability, anodes and cathodes integrity. A finite element model was developed to simulate the electric field in a 75 kA drained aluminum reduction cell. The current distribution and influences of the cathode inclination angle and anode-cathode distance (ACD) were studied. The results show that relatively large horizontal current density appears in the aluminum film, and the maximum value reaches 600 kA/m2. As the cathode inclination angle increases from 2° to 15°, the maximum current density of the metal pad increases by 15%, while the maximum current density of the aluminum-wettable coating layer decreases by 27%. The influence of the ACD on the current distribution is not obvious.
文摘A systematic study was conducted on current efficiency (CE), corrosion and structural changes in SnO2-based inert anodes (made of 96wt%SnO2+2wt%Sb2O3+2wt%CuO) on a laboratory Hall-Heroult aluminium cell. The influence of operating parameters and electrolyte composition on the CE and corrosion process were evaluated. The CE was found to be more than 90% and catastrophic corrosion took place at low percent of Al2O3, high percent of LiF, low cryolite ratio and high current densities. From all the structural changes that took place in the SnO2-based inert anodes, we assumed that the most important contribution was due to the migration of CuO towards the outer limits of the constituent grains of SnO2 based ceramic. The complex process occurred during the formation of various phases and their sintering ability both directly depended on Cu/Sb molar ratio.
基金Project(60634020) supported by the National Natural Science Foundation of China
文摘The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes was induced respectively to insure that the current in local group of flexes was equal. Furthermore, a 350 kA aluminum reduction cell based electric field model was developed by finite element method to evaluate the effect of the method. Suggestions on selection of three modes were also put forward. The results show that the methods of resistance optimization can reduce the current variation about 180 A compared with that in original case.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
文摘A systematic laboratory study was conducted on current efficiency and corrosion obtained in cryolite-alumina melts with SnO2-Sb203-CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring the total amount of oxygen evolved at the anode and was found to be ~ 95%. The influence of operating parameters (inter-elec- trode distance, temperature and current density) was evaluated. The quantitative interdependencies as well as the ranges of CE optima[ values were established (2-3 cm, 940-960 ℃ and 0.7-0.8 A.cm 2). The corrosion process of these anodes was evaluated by the mass loss method. The evaluation also took care of the corrosion data, as the prob- lem of the anode corrosion appeared to be the main obstacle for the use of those anodes in the commercial cells.Low-ering of the ACD up to 2 cm did not aggravate anode corrosion.
基金Projects(51104187,51274241,61321003) supported by the National Natural Science Foundation of ChinaProject(20100162120008) supported by Doctoral Fund of Ministry of Education of China
文摘To investigate the differences and the development trends of the 400 kA aluminum reduction cell, four representative cells were deeply analyzed. By using numerical simulation methods in ANSYS software, the structure parameters were firstly compared, and then three-dimensional models of electric-magnetic-flow field were built and solved with finite element method(FEM). The comparison of the structures reveals that the cell bodies are similar while the current flow path and distribution ratio of bus bars are different. It appears that most of the current(70%-80%) in side A are used as the magnetic field compensation current and flow through two ends. The numerical simulation results indicate that the distributions of magnetic fields are different but all satisfy with the magnetohydrodynamics(MHD) stabilization, and the flow patterns are all two or multi vortexes with appropriate velocities. The comparison shows that all studied cells can satisfy with the physical field requirement, and the commercial applications also verify that the 400 kA cells have become the product of the mature and world's leading technology.
基金Project(51434005) supported by the National Natural Science Foundation of China
文摘A transient three-dimensional(3 D) model was established to understand the bubble motion in an industrial electrolytic process. An anode with a new design was tested. It incorporates two slots that allow an efficient removal of gas bubbles. The electromagnetic fields were described by solving Maxwell's equations. The bubble movement was studied with two-way coupling Euler-Lagrange approach. The interplay of current density and bubble nucleation rate was included. The collision and coalescence of bubbles were considered. Random walk module was invoked for involving the chaotic effect of the turbulence. The numerical results were validated by experimental measurements. The results indicate that the current distribution and the bubble nucleation periodically change. Due to the slot, the bubble elimination heavily increases. The contribution of the slot to the bubble removal exceeds 50% in the case of three currents, and the promotion of the slot decays with increasing the current.
文摘The fume bake-out aluminum reduction cell is a novel technology possessing such advantages as easy control for the speed of heating-up, well-distributed temperature, and little cathode and anode oxidation. The key equipment of fume bake-out is a combustion train whose one important part is a dispensing house. This work deals with the numerical model and the flow and temperature fields of the dispensing house, which suggests that uniformity of flow and energy distribution is influenced by the position, shape and direction of the nozzle and cross dimension of dispensing house mainly, but is less influenced by entry speed. The parameters of the dispensing house structure are optimised to satisfy the requirements for a combustion train in fume bake-out, and appropriate dimensions are obtained for a dispensing house structure.