为探索茶树根际细菌的耐铝和有益生物学特性,从铁观音茶树根际土壤中筛选出3株耐铝细菌T3、T6、TJ3,通过检测菌株分泌植物促生物质的能力、平皿促生试验以及Al(Ⅲ)吸附试验,研究了菌株的植物促生特性和对铝离子的吸附效应。结果表明,...为探索茶树根际细菌的耐铝和有益生物学特性,从铁观音茶树根际土壤中筛选出3株耐铝细菌T3、T6、TJ3,通过检测菌株分泌植物促生物质的能力、平皿促生试验以及Al(Ⅲ)吸附试验,研究了菌株的植物促生特性和对铝离子的吸附效应。结果表明,本研究从铁观音茶树根际土壤中分离出3株耐铝细菌T3、T6、TJ3,3株茶树根际耐铝细菌显示出较好的植物促生性能,ACC脱氨酶活性在0.090~0.196μM/(mg·min),IAA分泌量最高达14.93 mg/L,3株菌均显示出固氮能力,菌株T3、T6具有较高的产铁载体能力和溶磷能力。菌株T6、TJ3对小麦种子胚根、胚轴的伸长具有明显的提高作用,菌株T6对小麦种子的发芽率亦显示出促进作用。Al(Ⅲ)吸附试验表明,菌株T6、TJ3比菌株T3具有更强的Al(Ⅲ)吸附能力,在p H 5.0,温度30℃时,吸附平衡时间约为60 min。16S r DNA分子鉴定显示菌株T3、T6、TJ3分别与Burkholderia anthina、Burkholderia cepacia、Pseudomonas fluorescens具有最大序列相似性。可见,筛选出的3株茶树根际细菌具有明显的植物促生作用和耐铝、吸铝效应,具有较好的应用开发前景。展开更多
Medicago is an important grass in the legume family,which is suitable to be grown in neutral or alkalescent soils,and hence,can be widely spread in south of China with low pH value.It is one of major objectives to cul...Medicago is an important grass in the legume family,which is suitable to be grown in neutral or alkalescent soils,and hence,can be widely spread in south of China with low pH value.It is one of major objectives to cultivate acid-aluminum tolerant species.In the research,6 high-quality species with high-yielding potential were taken as materials to make evaluation on acid-aluminum tolerance by cell-culture technique,and the results showed that tolerance capacity from high to low was GT13R>Muge 701=Muge 702>Acrora>AC-3>Sheshou No.2=Medicago sativa.展开更多
In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosi...In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosion resistance of Ce-based conversion coatings and Ce-silane-ZrO2 composite coatings were investigated by SEM, AFM, XPS and EIS analyses. Stacking structure of the composite coating can be observed. The inner layer of the composite coatings mainly consists of oxide and hydroxide of Ce(Ⅲ), and the silane network is composed of the outer layer together with a small amount of Ce(Ⅳ) hydroxide. By adding silane and ZrO2 nanoparticles into Ce-based conversion coatings, the porosity and the micro cracks of the coatings decrease apparently accompanying with the improvement of the corrosion resistance.展开更多
The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and...The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.展开更多
A new method for synthesizing Mg-Al hydrotalcite conversion coating on AZ91D Mg alloy was developed by the application of electric field (EF). By using EF technique, the formation time of the coating can be signific...A new method for synthesizing Mg-Al hydrotalcite conversion coating on AZ91D Mg alloy was developed by the application of electric field (EF). By using EF technique, the formation time of the coating can be significantly reduced. The SEM results indicate that a continuous and compact Mg-Al hydrotalcite coating is formed on the surface of Mg alloy after short time EF treatment. However, a long time treatment would make the coating partially exfoliate. The corrosion current density (Jcor ) of the coated sample (EF1+1 h) is approximately two orders of magnitude lower than that of Mg alloy substrate. The test of electrochemical impedance spectroscopy (EIS) and immersion corrosion also suggest that the coating can effectively protect Mg alloy against corrosion.展开更多
AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coatin...AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coating in distilled water were studied using the mass loss and electrochemical performance. As a result, pure Gd without coating shows a certain amount of surface cracks under water flow conditions, whereas the polygonal Al coating decreases the path of the corrosive medium to body due to the existence of eroding pits structure. Compared with the polygonal structure Al coating and pure Gd, the lamellar structure of Al coating exhibits a higher electrochemical protection performance (e.g., a lower corrosion current and higher self-corrosion potential) and no occurrence of pitting corrosion. Due to an effective physical shield, the formation of the lamellar structure protected the inner Gd part from being corroded, and prolonged the duration of cathodic protection.展开更多
xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte ...xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.展开更多
New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (...New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.展开更多
[Objective] The research aimed to select the buckwheat accessions with higher Al3+ tolerance.[Method]25 buckwheat accessions were used as materials,the Al3+ tolerance were studied by means of solution culture method...[Objective] The research aimed to select the buckwheat accessions with higher Al3+ tolerance.[Method]25 buckwheat accessions were used as materials,the Al3+ tolerance were studied by means of solution culture method in this research.The length of root was used to evaluate the degree of Al3+ tolerance.[Result]The root growth of some buckwheat accessions were significantly promoted under the concentration of 500 μmol/L,while high concentration of Al3+(1 000 μmol/L)inhibited the buckwheat roots growth.There were great variations of Al3+ tolerance among the different buckwheat genotypes.[Conclusion]Among the 25 buckwheat genotypes,L2081 and T442 had much higher Al3+ tolerance than the others,which could be used for research on the buckwheat breeding and the mechanism of the buckwheat Al3+ tolerance.展开更多
Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstruc...Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstructure and corrosion resistance of Al coating were investigated. The surface morphology of Al coating was characterized by scanning electron microscopy(SEM). The corrosion properties were investigated by potentiodynamic polarization curves and neutral salt spray(NSS) test. The formation of the uniform and compact Al coating is a necessary condition to achieve excellent corrosion resistance. And the optimal corrosion resistance can be obtained in the sample with 6.69 μm thick Al coating deposited at 51-82 W.展开更多
Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed ...Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.展开更多
Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety...Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety IR1552 and an Al tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for Al tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1, 9, 12, respectively, and 1 QTL for root length under Al stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for Al tolerance. This interval provides an important start point for isolating genes responsible for Al tolerance and understanding the genetic nature of Al tolerance in rice. Four Al induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL.展开更多
Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor ...Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plas- malemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley.展开更多
The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding spe...The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 r/min). The wear mechanisms of an MMC and the corresponding matrix material under similar experimental conditions were compared on a pin-on-disc wear machine. The pins were made of 6061 aluminum matrix alloy and 6061 aluminum matrix composite reinforced with 10% Al2O3 (volume fraciton) particles (6-18μm). The disc was made of steel. The major findings are as follows: the MMC shows much higher wear resistance than the corresponding matrix material; unlike that of matrix material, the wear of MMC is very much linear and possible to predict easily; the wear mechanism is similar for both materials other than the three-body abrasion in the case of MMC; the reinforced particles resist the abrasion and restrict the deformation of MMCs which causes high resistance to wear. These results reveal the roles of the reinforcement particles on the wear resistance of MMCs and provide a useful guide for a better control of their wear.展开更多
Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by in...Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH.However,corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration.Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte.The results show that the optimal NaOH concentration is 5 g/L,which improves the stability of storage electrolyte to about 35 days,and leads to dense coatings with high wear performance(wear rate:4.1×10^(−7) mm^(3)·N^(−1)·m^(−1)).展开更多
The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity...The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity is considerably decreased after the first pass, while subsequent passes result in better hardness behavior for the processed material. Also, the elongated grains formed in the first pass of the CGP are gradually converted to the equiaxed counterparts by adding pass numbers. Eventually, higher corrosion resistance of the sample by imposing the CGP process is related to the quick formation of passivation film and the change in the morphology of the second phase and precipitates which hinder their electrochemical reactions and decrease the potential localized attack sites.展开更多
Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% ...Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.展开更多
文摘为探索茶树根际细菌的耐铝和有益生物学特性,从铁观音茶树根际土壤中筛选出3株耐铝细菌T3、T6、TJ3,通过检测菌株分泌植物促生物质的能力、平皿促生试验以及Al(Ⅲ)吸附试验,研究了菌株的植物促生特性和对铝离子的吸附效应。结果表明,本研究从铁观音茶树根际土壤中分离出3株耐铝细菌T3、T6、TJ3,3株茶树根际耐铝细菌显示出较好的植物促生性能,ACC脱氨酶活性在0.090~0.196μM/(mg·min),IAA分泌量最高达14.93 mg/L,3株菌均显示出固氮能力,菌株T3、T6具有较高的产铁载体能力和溶磷能力。菌株T6、TJ3对小麦种子胚根、胚轴的伸长具有明显的提高作用,菌株T6对小麦种子的发芽率亦显示出促进作用。Al(Ⅲ)吸附试验表明,菌株T6、TJ3比菌株T3具有更强的Al(Ⅲ)吸附能力,在p H 5.0,温度30℃时,吸附平衡时间约为60 min。16S r DNA分子鉴定显示菌株T3、T6、TJ3分别与Burkholderia anthina、Burkholderia cepacia、Pseudomonas fluorescens具有最大序列相似性。可见,筛选出的3株茶树根际细菌具有明显的植物促生作用和耐铝、吸铝效应,具有较好的应用开发前景。
基金Supported by Project of Department of Education of Yunnan ProvinceQujing Normal University Teaching and Researching Project (Syjx2013004)~~
文摘Medicago is an important grass in the legume family,which is suitable to be grown in neutral or alkalescent soils,and hence,can be widely spread in south of China with low pH value.It is one of major objectives to cultivate acid-aluminum tolerant species.In the research,6 high-quality species with high-yielding potential were taken as materials to make evaluation on acid-aluminum tolerance by cell-culture technique,and the results showed that tolerance capacity from high to low was GT13R>Muge 701=Muge 702>Acrora>AC-3>Sheshou No.2=Medicago sativa.
基金Project(51172217)supported by the National Natural Science Foundation of ChinaProject(2010GGX10310)supported by Shandong Science and Technology Program,China+1 种基金Project(10-3-4-1-jch)supported by Science and Technology Program on Basic Research Project of Qingdao,ChinaProject(4500-841313001)supported by Fundamental Research Funds for the Central Universities,China
文摘In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosion resistance of Ce-based conversion coatings and Ce-silane-ZrO2 composite coatings were investigated by SEM, AFM, XPS and EIS analyses. Stacking structure of the composite coating can be observed. The inner layer of the composite coatings mainly consists of oxide and hydroxide of Ce(Ⅲ), and the silane network is composed of the outer layer together with a small amount of Ce(Ⅳ) hydroxide. By adding silane and ZrO2 nanoparticles into Ce-based conversion coatings, the porosity and the micro cracks of the coatings decrease apparently accompanying with the improvement of the corrosion resistance.
文摘The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.
基金Project(12KJB430007)supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,ChinaProjects(CKJB201203,CKJA201202)supported by the Innovation Fund of Nanjing Institute of Technology ChinaProject(201311276001Z)supported by the Innovative Foundation Project for Student of Nanjing Institute of Technology,China
文摘A new method for synthesizing Mg-Al hydrotalcite conversion coating on AZ91D Mg alloy was developed by the application of electric field (EF). By using EF technique, the formation time of the coating can be significantly reduced. The SEM results indicate that a continuous and compact Mg-Al hydrotalcite coating is formed on the surface of Mg alloy after short time EF treatment. However, a long time treatment would make the coating partially exfoliate. The corrosion current density (Jcor ) of the coated sample (EF1+1 h) is approximately two orders of magnitude lower than that of Mg alloy substrate. The test of electrochemical impedance spectroscopy (EIS) and immersion corrosion also suggest that the coating can effectively protect Mg alloy against corrosion.
基金Project(BK2012463)supported by the Natural Science Foundation of Jiangsu Province of ChinaProject(51245010)supported by Special Funds of the National Natural Science Foundation of China+1 种基金Project(11047143)supported by the National Natural Science Foundation of ChinaProjects(12KF069,12KF036)supported by Opening Found of Laboratory of Nanjing University of Information Science and Technology,China
文摘AI coatings with different microstructures were prepared on the surface of Gd using the magnetron sputtering technique to improve its corrosion resistance. The corrosion behaviors for the pure Gd and Gd with Al coating in distilled water were studied using the mass loss and electrochemical performance. As a result, pure Gd without coating shows a certain amount of surface cracks under water flow conditions, whereas the polygonal Al coating decreases the path of the corrosive medium to body due to the existence of eroding pits structure. Compared with the polygonal structure Al coating and pure Gd, the lamellar structure of Al coating exhibits a higher electrochemical protection performance (e.g., a lower corrosion current and higher self-corrosion potential) and no occurrence of pitting corrosion. Due to an effective physical shield, the formation of the lamellar structure protected the inner Gd part from being corroded, and prolonged the duration of cathodic protection.
基金Project(2005CB623703)supported by the National Basic Research Program of ChinaProject(50721003)supported by the National Natural Science Foundation for Innovation Group of China+1 种基金Project(2008AA030501)supported by the National High-tech Research and Development Program of ChinaProject(201012200021)supported by the Basic Scientific Research Program of Central South University,China
文摘xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.
基金Project(51374240)supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02)supported by the National Science and Technology Pillar Program of China
文摘New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.
基金Supported by Science and Technology Foundation of Guizhou Province(QKH J[2009]2108)Doctoral Research Fund in Guizhou Normal University(2008)~~
文摘[Objective] The research aimed to select the buckwheat accessions with higher Al3+ tolerance.[Method]25 buckwheat accessions were used as materials,the Al3+ tolerance were studied by means of solution culture method in this research.The length of root was used to evaluate the degree of Al3+ tolerance.[Result]The root growth of some buckwheat accessions were significantly promoted under the concentration of 500 μmol/L,while high concentration of Al3+(1 000 μmol/L)inhibited the buckwheat roots growth.There were great variations of Al3+ tolerance among the different buckwheat genotypes.[Conclusion]Among the 25 buckwheat genotypes,L2081 and T442 had much higher Al3+ tolerance than the others,which could be used for research on the buckwheat breeding and the mechanism of the buckwheat Al3+ tolerance.
基金Project(NCET-11-0127)supported by Program for New Century Excellent Talents in University,ChinaProject(K1306063-11)supported by the Key Project for Science and Technology of Changsha,China
文摘Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstructure and corrosion resistance of Al coating were investigated. The surface morphology of Al coating was characterized by scanning electron microscopy(SEM). The corrosion properties were investigated by potentiodynamic polarization curves and neutral salt spray(NSS) test. The formation of the uniform and compact Al coating is a necessary condition to achieve excellent corrosion resistance. And the optimal corrosion resistance can be obtained in the sample with 6.69 μm thick Al coating deposited at 51-82 W.
基金Project(51404038)supported by the National Natural Science Foundation of China
文摘Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.
基金Project (No. 30070070) supported by the National NaturalScience Foundation of China
文摘Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety IR1552 and an Al tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for Al tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1, 9, 12, respectively, and 1 QTL for root length under Al stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for Al tolerance. This interval provides an important start point for isolating genes responsible for Al tolerance and understanding the genetic nature of Al tolerance in rice. Four Al induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL.
基金Project supported by NSW Agricultural Genomic Centre and theGrains Research and Development Corporation (GRDC) of Australia(No. UT8)
文摘Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plas- malemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley.
文摘The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 r/min). The wear mechanisms of an MMC and the corresponding matrix material under similar experimental conditions were compared on a pin-on-disc wear machine. The pins were made of 6061 aluminum matrix alloy and 6061 aluminum matrix composite reinforced with 10% Al2O3 (volume fraciton) particles (6-18μm). The disc was made of steel. The major findings are as follows: the MMC shows much higher wear resistance than the corresponding matrix material; unlike that of matrix material, the wear of MMC is very much linear and possible to predict easily; the wear mechanism is similar for both materials other than the three-body abrasion in the case of MMC; the reinforced particles resist the abrasion and restrict the deformation of MMCs which causes high resistance to wear. These results reveal the roles of the reinforcement particles on the wear resistance of MMCs and provide a useful guide for a better control of their wear.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(No.51671084).
文摘Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH.However,corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration.Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte.The results show that the optimal NaOH concentration is 5 g/L,which improves the stability of storage electrolyte to about 35 days,and leads to dense coatings with high wear performance(wear rate:4.1×10^(−7) mm^(3)·N^(−1)·m^(−1)).
基金funded by“Quality Engineering Project of Anhui Province of China in 2016”entitled mold design and manufacturing experimental training center(2016sxzx050)。
文摘The use of a constrained groove pressing(CGP) method to plastically deform AA6063 aluminum alloy led to the improved surface properties. It was found that hardness magnitude is dramatically improved and its uniformity is considerably decreased after the first pass, while subsequent passes result in better hardness behavior for the processed material. Also, the elongated grains formed in the first pass of the CGP are gradually converted to the equiaxed counterparts by adding pass numbers. Eventually, higher corrosion resistance of the sample by imposing the CGP process is related to the quick formation of passivation film and the change in the morphology of the second phase and precipitates which hinder their electrochemical reactions and decrease the potential localized attack sites.
基金Project (51405392) supported by the National Natural Science Foundation of ChinaProject (2019T120954) supported by the China Postdoctoral Science Foundation+1 种基金Project (3102019MS0404) supported by Fundamental Research Funds for the Central Universities, ChinaProject (2018BSHQYXMZZ31) supported by the Postdoctoral Science Foundation of Shaanxi Province, China。
文摘Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.