利用Gleeble-3800热模拟试验机进行热变形实验,开展含钪2099铝-锂合金的热变形行为研究。研究表明:在热变形初期,随着应变量的增加,流变应力呈急剧上升的趋势。在应变量为0.06左右时,合金在各变形条件下的流变应力均达到峰值;当应变量...利用Gleeble-3800热模拟试验机进行热变形实验,开展含钪2099铝-锂合金的热变形行为研究。研究表明:在热变形初期,随着应变量的增加,流变应力呈急剧上升的趋势。在应变量为0.06左右时,合金在各变形条件下的流变应力均达到峰值;当应变量继续增加时,合金的流变应力开始出现不同程度的下降。ln[sinh(ασ)]与lnε·以及ln[sinh(ασ)]与1/T之间满足线性关系,其平均热变形激活能为182.451 k J/mol,合金热压缩变形时的流变应力方程为ε·=2.05×10^(16)[sinh(0.01752σ)]^(6.542)exp(-182451/RT)。在变形温度为400℃,应变速率为1 s^(-1)条件下,合金组织中存在大量的位错墙;随着应变速率的降低,当应变速率为0.01 s^(-1)时,合金内部可以观察到少量动态再结晶组织。展开更多
The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were prefor...The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653-773 K and in the strain rate range of 0.001-10 s-1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature,and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate,and in an Arrhenius relationship with the temperature,which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n,α and A in the analytical expressions of flow stress σ are fitted to be 5.62,0.019 MPa-1 and 1.51×1016 s-1,respectively. The hot deformation activation energy is 240.85 kJ/mol.展开更多
文摘利用Gleeble-3800热模拟试验机进行热变形实验,开展含钪2099铝-锂合金的热变形行为研究。研究表明:在热变形初期,随着应变量的增加,流变应力呈急剧上升的趋势。在应变量为0.06左右时,合金在各变形条件下的流变应力均达到峰值;当应变量继续增加时,合金的流变应力开始出现不同程度的下降。ln[sinh(ασ)]与lnε·以及ln[sinh(ασ)]与1/T之间满足线性关系,其平均热变形激活能为182.451 k J/mol,合金热压缩变形时的流变应力方程为ε·=2.05×10^(16)[sinh(0.01752σ)]^(6.542)exp(-182451/RT)。在变形温度为400℃,应变速率为1 s^(-1)条件下,合金组织中存在大量的位错墙;随着应变速率的降低,当应变速率为0.01 s^(-1)时,合金内部可以观察到少量动态再结晶组织。
基金Project(2002AA305104) supported by the National High-Tech Research and Development Program of China
文摘The flow stress behavior of Al-3.5Cu-1.5Li-0.25(Sc+Zr) alloy during hot compression deformation was studied by isothermal compression test using Gleeble-1500 thermal-mechanical simulator. Compression tests were preformed in the temperature range of 653-773 K and in the strain rate range of 0.001-10 s-1 up to a true plastic strain of 0.7. The results indicate that the flow stress of the alloy increases with increasing strain rate at a given temperature,and decreases with increasing temperature at a given imposed strain rate. The relationship between the flow stress and the strain rate and the temperature was derived by analyzing the experimental data. The flow stress is in a hyperbolic sine relationship with the strain rate,and in an Arrhenius relationship with the temperature,which imply that the process of plastic deformation at an elevated temperature for this material is thermally activated. The flow stress of the alloy during the elevated temperature deformation can be represented by a Zener-Hollomon parameter with the inclusion of the Arrhenius term. The values of n,α and A in the analytical expressions of flow stress σ are fitted to be 5.62,0.019 MPa-1 and 1.51×1016 s-1,respectively. The hot deformation activation energy is 240.85 kJ/mol.