The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics w...The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics were investigated by introducing both types of alcohols as water solidification modifier into the initial slurries, such as ethanol and 1-propanol. With the addition of ethanol or 1-propanol, the viscosities of slurries increased and porosities of sintered ceramics decreased. The compressive strengths of the sintered porous alumina ceramics were improved due to a good connectivity between lamellae with the addition of both types of alcohols. The lowest porosities of 68.52% and 73.72% and highest compressive strengths of 18.2 MPa and 15.0 MPa were obtained by the addition of 30% ethanol in mass fraction and 1-propanol, respectively.展开更多
xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte ...xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.展开更多
NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance...NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance during electrolysis in molten salt cryolite at 960 °C, but according to the analyses of phase compositions and microstructures through XRD, SEM/EDX and metallographic analysis, the metal in the anodes is preferentially corroded and many pores are produced on the anode surface after electrolysis. The preferential dissolution of Fe in the NiFe2O4 phase may lead to the non-uniform corrosion of NiFe2O4 grains. Moreover, a dense protective layer of NiFe2O4-NiAl2O4-FeAl2O4 is formed on the anode surface, which originates from the reaction of Al2O3 dissolved in the electrolyte with NiO or FeO, the annexation of NiFe2O4-NiAl2O4-FeAl2O4 to NiO and volume expansion. Thus, the dense NiFe2O4-NiAl2O4-FeAl2O4 layer inhibits the metal loss and ceramic-phase corrosion on the surface of the cermet inert anodes.展开更多
A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rate...A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.展开更多
An alternative solution for the direct formation of?-LiAlO2 was presented by a modified combustion method,to apply it to rather simple systems,utilizing non-oxidizer compounds such as Al2O3 and LiOH,and urea as fuel.L...An alternative solution for the direct formation of?-LiAlO2 was presented by a modified combustion method,to apply it to rather simple systems,utilizing non-oxidizer compounds such as Al2O3 and LiOH,and urea as fuel.LiAlO2 was prepared via non-stoichiometric 1:1,1.5:1 and 2:1 of Li/Al molar ratios at 900 and 1000°C for 5 min.Textural and structural characterization ofγ-LiAlO2 was performed.Also,the effect of different Li/Al molar ratios on material morphology and its stability before high gamma radiation gradients was evaluated.The results showed that the crystal structures of the obtained powders wereγ-LiAlO2 and?-LiAlO2,depending on the Li/Al molar ratio.The results obtained demonstrate that?-LiAlO2 microbricks,polyhedral and laminar shapes can be successfully synthesized with the proposed method and without any subsequent process.Additionally,gamma irradiation showed that the?-LiAlO2 obtained does not decompose,forming only small amounts of Li2CO3.It can be established that the irradiation produces consolidation,which is not favourable for an efficient extraction of tritium.Finally,it could be demonstrated that nitrate precursors are not necessary in the combustion method to produceγ-LiAlO2 with high purity.展开更多
Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of ...Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of metal Cu on the electrical conductivity were investigated especially. The results indicate that the metallic phase Cu distributes evenly in 10NiO-NiFe2O4 ceramic matrix. The mechanism of electrical conductivity of Cu/(10NiO-NiFe2O4) cermets obeys the rule of electrical mechanism of semiconductor, the electrical conductivity for cermet containing 5% Cu increases from 2.70 to 20.41 S/cm with temperature increasing from 200 to 900 ℃. The change trend of electrical conductivity with temperature is similar with each other and it increases with increasing temperature and content of metal Cu. At 960 ℃, the electrical conductivity of cermet increases from 2.88 to 82.65 S/cm with the content of metal Cu increasing from 0 to 20%.展开更多
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences ...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.展开更多
Ammonium aluminum carbonate hydroxide (AACH) precursor was synthesized by the precipitation reaction of aluminum sulfate and ammonium carbonate. Then the precursor was dealt with five drying methods including ordinary...Ammonium aluminum carbonate hydroxide (AACH) precursor was synthesized by the precipitation reaction of aluminum sulfate and ammonium carbonate. Then the precursor was dealt with five drying methods including ordinary drying, alcohol exchange, vacuum freeze-drying, glycol distillation, n-butanol azeotropic distillation respectively and calcined at 1 200 ℃ for 2 h to get α-Al2O3. The effects of drying methods on preparation of nanometer α-Al2O3 were discussed, and the optimal drying method was confirmed. The structural properties of powders were characterized by XRD, SEM and BET measurements. The results show that vacuum freeze-drying, glycol distillation and n-butanol azeotropic distillation can prevent the powders from aggregating, and among them the n-butanol azeotropic distillation is the best method. The nanometer α-Al2O3 powder with non-aggregation can be manufactured using n-butanol azeotropic distillation and the average particle size is about 40 nm.展开更多
The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the...The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.展开更多
5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under elec...5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.展开更多
To obtain porous alumina ceramic with high strength,a novel gelcasting system based on 2-hydroxyethyl methacrylate(HEMA)dissolved in tert-butyl alcohol(TBA)was developed.The polymerization of the HEMA-TBA gelcasting s...To obtain porous alumina ceramic with high strength,a novel gelcasting system based on 2-hydroxyethyl methacrylate(HEMA)dissolved in tert-butyl alcohol(TBA)was developed.The polymerization of the HEMA-TBA gelcasting system,the thermal behavior of obtained green body,and the microstructures and mechanical properties of the sintered bodies were investigated by rheometer,TG-DSC,SEM and bending strength testing,respectively.The results show that,(1)10 mg/mL of the initiator(benzoyl peroxide)is the optimal amount for polymerization of this gelscasting system at 25 ℃;(2)The alumina suspension of the HEMA-TBA gelcasting system showing shear-thinning behavior is sufficiently low for gelcasting process;(3)The bending strength of porous alumina ceramic samples,whose porosities range from 42% to 56%,is from(8±0.5)to(91±4.5)MPa.展开更多
The chemical composition, structure and thermal stability of the spent FCC equilibrium catalyst from an oil refinery were characterized by XRD, FT-IR, DTA-TG, BET, complete chemical analysis, SEM, and XRF. The spent F...The chemical composition, structure and thermal stability of the spent FCC equilibrium catalyst from an oil refinery were characterized by XRD, FT-IR, DTA-TG, BET, complete chemical analysis, SEM, and XRF. The spent FCC equilibrium catalyst, clay, barium carbonate, and talc were used as the main raw materials to prepare the alumina abrasion-resistant ceramic balls to be used in the powder grinding mill for manufacture of architecture tiles. The results showed that after proper formulation study, the spent FCC equilibrium catalyst could replace industrial alumina to prepare high performance grinding balls. Meanwhile, the various performance indices of the grinding ball could meet the quality standard for similar products, and additionally, the energy saving effect was achieved in the operation of the grinding section, resulting in a successful comprehensive utilization of solid wastes.展开更多
Based on the FEA software ANSYS,a model was developed to simulate the thermal stress distribution of inert anode.In order to reduce its thermal stress,the effect of some parameters on thermal stress distribution was i...Based on the FEA software ANSYS,a model was developed to simulate the thermal stress distribution of inert anode.In order to reduce its thermal stress,the effect of some parameters on thermal stress distribution was investigated,including the temperature of electrolyte,the current,the anode cathode distance,the anode immersion depth,the surrounding temperature and the convection coefficient between anode and circumstance.The results show that there exists a large axial tensile stress near the tangent interface between the anode and bath,which is the major cause of anode breaking.Increasing the temperature of electrolyte or the anode immersion depth will deteriorate the stress distribution of inert anode.When the bath temperature increases from 750 to 970 ℃,the maximal value and absolute minimal value of the 1st principal stress increase by 29.7% and 29.6%,respectively.When the anode immersion depth is changed from 1 to 10 cm,the maximal value and absolute minimal value of the 1st principal stress increase by 52.1% and 65.0%,respectively.The effects of other parameters on stress distribution are not significant.展开更多
The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO...The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.展开更多
Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density o...Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.展开更多
基金Projects(20110162130003,20110162110044)supported by the PhD Programs Foundation of Ministry of Education of ChinaProjects(51172288,51072235)supported by the National Natural Science Foundation of ChinaProject(11JJ1008)supported by Hunan Provincial Natural Science Foundation of China
文摘The porous alumina ceramics with lamellar structure were fabricated successfully by freeze casting. The viscosities of alumina slurries, pore structures, porosities and mechanical properties of the sintered ceramics were investigated by introducing both types of alcohols as water solidification modifier into the initial slurries, such as ethanol and 1-propanol. With the addition of ethanol or 1-propanol, the viscosities of slurries increased and porosities of sintered ceramics decreased. The compressive strengths of the sintered porous alumina ceramics were improved due to a good connectivity between lamellae with the addition of both types of alcohols. The lowest porosities of 68.52% and 73.72% and highest compressive strengths of 18.2 MPa and 15.0 MPa were obtained by the addition of 30% ethanol in mass fraction and 1-propanol, respectively.
基金Project(2005CB623703)supported by the National Basic Research Program of ChinaProject(50721003)supported by the National Natural Science Foundation for Innovation Group of China+1 种基金Project(2008AA030501)supported by the National High-tech Research and Development Program of ChinaProject(201012200021)supported by the Basic Scientific Research Program of Central South University,China
文摘xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.
基金Project (2012FJ6123) supported by the Project of Science and Technology of Hunan Province,ChinaProject supported by Post-Doctoral Foundation of Central South University,China+1 种基金Project (CL12100) supported the Undergraduate Innovative Training of Central South University,ChinaProject (2282013bkso13) supported by Free Exploration Plan of Central South University,China
文摘NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance during electrolysis in molten salt cryolite at 960 °C, but according to the analyses of phase compositions and microstructures through XRD, SEM/EDX and metallographic analysis, the metal in the anodes is preferentially corroded and many pores are produced on the anode surface after electrolysis. The preferential dissolution of Fe in the NiFe2O4 phase may lead to the non-uniform corrosion of NiFe2O4 grains. Moreover, a dense protective layer of NiFe2O4-NiAl2O4-FeAl2O4 is formed on the anode surface, which originates from the reaction of Al2O3 dissolved in the electrolyte with NiO or FeO, the annexation of NiFe2O4-NiAl2O4-FeAl2O4 to NiO and volume expansion. Thus, the dense NiFe2O4-NiAl2O4-FeAl2O4 layer inhibits the metal loss and ceramic-phase corrosion on the surface of the cermet inert anodes.
基金Project(51474238)supported by the National Natural Science Foundation of China
文摘A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.
基金supported by National Institute of Nuclear Research (ININ)Autonomous University of Puebla (BUAP)co-financed by National Council of Science and Technology (CONACYT, México)
文摘An alternative solution for the direct formation of?-LiAlO2 was presented by a modified combustion method,to apply it to rather simple systems,utilizing non-oxidizer compounds such as Al2O3 and LiOH,and urea as fuel.LiAlO2 was prepared via non-stoichiometric 1:1,1.5:1 and 2:1 of Li/Al molar ratios at 900 and 1000°C for 5 min.Textural and structural characterization ofγ-LiAlO2 was performed.Also,the effect of different Li/Al molar ratios on material morphology and its stability before high gamma radiation gradients was evaluated.The results showed that the crystal structures of the obtained powders wereγ-LiAlO2 and?-LiAlO2,depending on the Li/Al molar ratio.The results obtained demonstrate that?-LiAlO2 microbricks,polyhedral and laminar shapes can be successfully synthesized with the proposed method and without any subsequent process.Additionally,gamma irradiation showed that the?-LiAlO2 obtained does not decompose,forming only small amounts of Li2CO3.It can be established that the irradiation produces consolidation,which is not favourable for an efficient extraction of tritium.Finally,it could be demonstrated that nitrate precursors are not necessary in the combustion method to produceγ-LiAlO2 with high purity.
基金Project(2005CB623703) supported by the National Basic Research and Development Program of China
文摘Cu/(10NiO-NiFe2O4) cermets containing mass fractions of Cu of 5%, 10%, 15% and 20% were prepared, and their electrical conductivities were measured at different temperatures. The effects of temperature and content of metal Cu on the electrical conductivity were investigated especially. The results indicate that the metallic phase Cu distributes evenly in 10NiO-NiFe2O4 ceramic matrix. The mechanism of electrical conductivity of Cu/(10NiO-NiFe2O4) cermets obeys the rule of electrical mechanism of semiconductor, the electrical conductivity for cermet containing 5% Cu increases from 2.70 to 20.41 S/cm with temperature increasing from 200 to 900 ℃. The change trend of electrical conductivity with temperature is similar with each other and it increases with increasing temperature and content of metal Cu. At 960 ℃, the electrical conductivity of cermet increases from 2.88 to 82.65 S/cm with the content of metal Cu increasing from 0 to 20%.
基金Supported by the Special Funds for Major State Basic Research Program of China (No.2003CB615702), the National Natural Science Foundation of China (No.20636020) and the Natural Science Foundation of Jiangsu Province (No.BK2006722).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.
基金Project (5JJ30103) supported by the Natural Science Foundation of Hunan Province, China
文摘Ammonium aluminum carbonate hydroxide (AACH) precursor was synthesized by the precipitation reaction of aluminum sulfate and ammonium carbonate. Then the precursor was dealt with five drying methods including ordinary drying, alcohol exchange, vacuum freeze-drying, glycol distillation, n-butanol azeotropic distillation respectively and calcined at 1 200 ℃ for 2 h to get α-Al2O3. The effects of drying methods on preparation of nanometer α-Al2O3 were discussed, and the optimal drying method was confirmed. The structural properties of powders were characterized by XRD, SEM and BET measurements. The results show that vacuum freeze-drying, glycol distillation and n-butanol azeotropic distillation can prevent the powders from aggregating, and among them the n-butanol azeotropic distillation is the best method. The nanometer α-Al2O3 powder with non-aggregation can be manufactured using n-butanol azeotropic distillation and the average particle size is about 40 nm.
基金Project(2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject(2008AA030503) supported by Hi-Tech Research and Development Program of China
文摘The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.
基金Project (2005CB623703) supported by the Major State Basic Research and Development Program of China
文摘5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.
基金Project(51202296) supported by the National Natural Science Foundation of China
文摘To obtain porous alumina ceramic with high strength,a novel gelcasting system based on 2-hydroxyethyl methacrylate(HEMA)dissolved in tert-butyl alcohol(TBA)was developed.The polymerization of the HEMA-TBA gelcasting system,the thermal behavior of obtained green body,and the microstructures and mechanical properties of the sintered bodies were investigated by rheometer,TG-DSC,SEM and bending strength testing,respectively.The results show that,(1)10 mg/mL of the initiator(benzoyl peroxide)is the optimal amount for polymerization of this gelscasting system at 25 ℃;(2)The alumina suspension of the HEMA-TBA gelcasting system showing shear-thinning behavior is sufficiently low for gelcasting process;(3)The bending strength of porous alumina ceramic samples,whose porosities range from 42% to 56%,is from(8±0.5)to(91±4.5)MPa.
基金the funding provided by the Fujian Provincial Education Department Project(JA09054)the Project administered by the Fujian Normal University(XG-004)+4 种基金the Fujian Provincial Eco- nomic and Trade Commission Project(HE0536)the Open Project of the MOE's Key Laboratory for Medical and Photoelectrical Science and Technology(JYG0821)the Open Project of Hubei Province,the State Nationalities Committee,and the MOE Joint Key Laboratory for Catalytic Material Science(CHCL08008)the Fujian Provincial Testing Fund Project for the Key Laboratory of Highmolecular Materials(FJKL-POLY2010-17)the Training for Excellence Youth Skeleton Teacher of Fujian Normal University(No.2008100228).
文摘The chemical composition, structure and thermal stability of the spent FCC equilibrium catalyst from an oil refinery were characterized by XRD, FT-IR, DTA-TG, BET, complete chemical analysis, SEM, and XRF. The spent FCC equilibrium catalyst, clay, barium carbonate, and talc were used as the main raw materials to prepare the alumina abrasion-resistant ceramic balls to be used in the powder grinding mill for manufacture of architecture tiles. The results showed that after proper formulation study, the spent FCC equilibrium catalyst could replace industrial alumina to prepare high performance grinding balls. Meanwhile, the various performance indices of the grinding ball could meet the quality standard for similar products, and additionally, the energy saving effect was achieved in the operation of the grinding section, resulting in a successful comprehensive utilization of solid wastes.
基金Project (2005CB623703) supported by the National Basic Research and Development Program of ChinaProject (50474051) supported by the National Natural Science Foundation of China
文摘Based on the FEA software ANSYS,a model was developed to simulate the thermal stress distribution of inert anode.In order to reduce its thermal stress,the effect of some parameters on thermal stress distribution was investigated,including the temperature of electrolyte,the current,the anode cathode distance,the anode immersion depth,the surrounding temperature and the convection coefficient between anode and circumstance.The results show that there exists a large axial tensile stress near the tangent interface between the anode and bath,which is the major cause of anode breaking.Increasing the temperature of electrolyte or the anode immersion depth will deteriorate the stress distribution of inert anode.When the bath temperature increases from 750 to 970 ℃,the maximal value and absolute minimal value of the 1st principal stress increase by 29.7% and 29.6%,respectively.When the anode immersion depth is changed from 1 to 10 cm,the maximal value and absolute minimal value of the 1st principal stress increase by 52.1% and 65.0%,respectively.The effects of other parameters on stress distribution are not significant.
基金Project(2009BAE80B01) supported by the Key Projects in the National Science and Technology Pillar Program During the11th Five-Year Plan Period,China
文摘The influence of some additives on bulk density,phase composition,mechanical strength and thermal shock resistance of aluminium titanate (AT) ceramics was investigated.AT ceramics with different additives of MgO,SiO2 and Fe2O3 were prepared by reaction sintering.Properties of AT ceramics were tested by using Archimedes,three-point bending and thermal cycling tests.It was found that additives of MgO,SiO2 and Fe2O3 or their compound additives are favorable to reduce the porosities of AT,enhance mechanical strength and thermal shock resistance.The role of additives can be rationalized in terms of promotion of sintering process,formation of new phases and influence on lattice constant c of AT ceramics.
基金Project(51371039)supported by the National Natural Science Foundation of China
文摘Plasma electrolytic oxidation (PEO) ceramic coatings were fabricated in a silicate-based electrolyte with the addition of potassium fluorozirconate (K2ZrF6) on 6063 aluminum alloy, and the effects of current density on microstructure and properties of the PEO coatings were studied. It was found that pore density of the coatings decreased with increasing the current density. The tribological and hardness tests suggested that the ceramic coating produced under the current density of 15 A/dm2showed the best mechanical property, which matched well with the phase analysis. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves proved that the coating obtained under 15 A/dm2 displayed the best anti-corrosion property, which was directly connected with morphologies of coatings.