The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid ...The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid concentration,chloride ion concentration,hydrogen ion concentration were examined on the extraction efficiency of Cyphos IL 101 towards In(III).Quantitative extraction of indium was found at 2.0 mol/L HCl using 0.005 mol/L Cyphos IL 101 and quantitative stripping with 1.0 mol/L H2SO4.Job’s method was used to determine the extracted species and R3R'PInCl4(R=C6H13;R′=C14H29)was proposed.Based on the observations on multi-metal studies,Cyphos IL 101 was further employed for the removal of indium,tin and copper from the leach liquors of waste LCDs.Optimized conditions were generated for the recovery of indium from waste LCDs.McCabe−Thiele diagram analysis,counter-current extraction and selective stripping were carried out to separate the metal ions,i.e.,indium,tin and copper.Two stages at O/A ratio of 1:3 were required for complete removal of tin from the feed and selective stripping of In and Sn was achieved using 0.1 mol/L H2SO4.A scheme for separating indium from the waste LCDs was proposed.展开更多
A method of recovering indium from complex smelting residue containing indium was investiga ted. Indium was extracted by technique of low acid leaching and solvent extraction. The conditions of separating iron and ind...A method of recovering indium from complex smelting residue containing indium was investiga ted. Indium was extracted by technique of low acid leaching and solvent extraction. The conditions of separating iron and indium were studied and the optimal conditions were determined. When the residue is two class countercurrent leached with 2 mol/L H 2SO 4 and 30 40 g/L NaCl at 100 ℃, the leaching rate of indium is 80%. The extraction rate of indium is over 98% and that of iron is less than 5% after it is third class countercurrent extracted by P204, and when sulfonated kerosene is used as solvent, acidity in aqueous phase remains the same as that of leaching liquid, and phase is for 1∶3. Using 2 mol/L HCl as back extraction agent, with phase ratio being 5∶1, by third class countercurrent back extraction, the back extraction rate of indium is over 99%, but that of iron is very low, which can meet the need of separating indium and iron.展开更多
文摘The main goal of this study was to recover indium from the waste liquid crystal display(LCD)panel.In this context,an ionic liquid Cyphos IL 101 was explored.The extraction parameters such as equilibration period,acid concentration,chloride ion concentration,hydrogen ion concentration were examined on the extraction efficiency of Cyphos IL 101 towards In(III).Quantitative extraction of indium was found at 2.0 mol/L HCl using 0.005 mol/L Cyphos IL 101 and quantitative stripping with 1.0 mol/L H2SO4.Job’s method was used to determine the extracted species and R3R'PInCl4(R=C6H13;R′=C14H29)was proposed.Based on the observations on multi-metal studies,Cyphos IL 101 was further employed for the removal of indium,tin and copper from the leach liquors of waste LCDs.Optimized conditions were generated for the recovery of indium from waste LCDs.McCabe−Thiele diagram analysis,counter-current extraction and selective stripping were carried out to separate the metal ions,i.e.,indium,tin and copper.Two stages at O/A ratio of 1:3 were required for complete removal of tin from the feed and selective stripping of In and Sn was achieved using 0.1 mol/L H2SO4.A scheme for separating indium from the waste LCDs was proposed.
文摘A method of recovering indium from complex smelting residue containing indium was investiga ted. Indium was extracted by technique of low acid leaching and solvent extraction. The conditions of separating iron and indium were studied and the optimal conditions were determined. When the residue is two class countercurrent leached with 2 mol/L H 2SO 4 and 30 40 g/L NaCl at 100 ℃, the leaching rate of indium is 80%. The extraction rate of indium is over 98% and that of iron is less than 5% after it is third class countercurrent extracted by P204, and when sulfonated kerosene is used as solvent, acidity in aqueous phase remains the same as that of leaching liquid, and phase is for 1∶3. Using 2 mol/L HCl as back extraction agent, with phase ratio being 5∶1, by third class countercurrent back extraction, the back extraction rate of indium is over 99%, but that of iron is very low, which can meet the need of separating indium and iron.