The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment...The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.展开更多
The recovery of indium from waste indium tin oxide (ITO) target has great significance for the economy and environment.Based on our previous study on the optimization of acid leaching technique,the present study foc...The recovery of indium from waste indium tin oxide (ITO) target has great significance for the economy and environment.Based on our previous study on the optimization of acid leaching technique,the present study focuses on tin removal via zinc substitution and indium recovery from a tin-free leach solution.The results show that when the amount of added zinc powder and reaction time increase,the tin removal effect can be improved.The optimal conditions obtained are as follows:additional content of zinc powder from 20 g/L to 25 g/L,reaction temperature of 60 ℃,and reaction time from 3 h to 4 h.Under this condition,the tin removal rate exceeds 98%,and the tin content in the tin removal solution is lower than 0.05 g/L.After tin removal,the substitution time could be reduced from 3-5 d to 1-2 d by neutralizing the residual acid by using alkaline residue and maintaining the pH value less than 2.The indium recovery rate is also improved when this condition is used.The indium content in the tin residue is reduced to lower than 0.1% and the acid-insoluble β-SnO2 could be obtained via the strong nitric acid leaching of the indium-containing tin residue.Indium could be recovered from ITO with a high purity of 99.995% via electrorefining.展开更多
Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin ...Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.展开更多
An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The...An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The CuOx/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m2 at current efficiency of 3 cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuOJCu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6 V with 3 400 cd/m^2, which is almost twice as high as that of the compared device.展开更多
The simultaneous deposition of rGO and gold nano structures has been achieved by electrodeposition from mixed solutions containing graphene oxide(GO)and a gold precursor.Scanning electron microscope(SEM),Raman spectro...The simultaneous deposition of rGO and gold nano structures has been achieved by electrodeposition from mixed solutions containing graphene oxide(GO)and a gold precursor.Scanning electron microscope(SEM),Raman spectroscopy and atomic force microscopy(AFM)have been employed to reveal the morphology,uniformity and practical stability of the nanocomposite films on the indium tin oxide(ITO)substrate.The AFM data showed heights of tens of nanometers of the nanocomposite,suggesting that multilayers of rGO with gold nanoparticles had been formed as a result of the electrochemical co-deposition.Differential pulse voltammetry(DPV),as a widely used analytical technique,has been carried out on the rGO-Au/ITO electrode for the quantitative detection of dopamine(DA).The detection limit(S/N=3)for the determination of DA was evaluated as 0.6μM.展开更多
An NH2+ ion implantation-modified indium tin oxide film was prepared and the implantation of amino groups on the indium tin oxide substrate was verified by X-ray photoelectron spectroscopy analysis.The gold nanopartic...An NH2+ ion implantation-modified indium tin oxide film was prepared and the implantation of amino groups on the indium tin oxide substrate was verified by X-ray photoelectron spectroscopy analysis.The gold nanoparticles attached surface could be obtained by self-assembly of different sized colloidal gold nanoparticles onto the NH2+ ion implantation-modified indium tin oxide surface.By scanning electron microscopy and electrochemical techniques,the as-prepared AuNPs attached NH2+ ion implantation-modified indium tin oxide electrode was characterized and compared with bare indium tin oxide electrode.Using a [Fe(CN)6]3 /[Fe(CN)6]4 redox probe,the increasingly facile heterogeneous electron transfer kinetics resulting from the attached gold nanoparticle arrays was observed.The gold nanoparticle arrays exhibited high catalytic activity toward the electro-oxidation of nitric oxide,which could provide electroanalytical application for nitric oxide sensing.展开更多
In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current...In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current spreading layer of LEDs. As aresult, the textured transparent ITO layer greatly enhanced the external quantum efficiency of the LEDs. Provided that a wafersample was dipped in a kind of corrosive liquid developed by us for only about 60 s, the light output powers of the LEDs canbe promoted by 24.7%, compared with conventional GaN-based LEDs. It is obvious that the presented method is simple, rapidand cost-effective.展开更多
Generally, nanoparticles are easy to aggregate due to their nano sizes, which influence the physical and chemical properties. In this work, a dispersion treatment of the TiO2 nanoparticles with different average sizes...Generally, nanoparticles are easy to aggregate due to their nano sizes, which influence the physical and chemical properties. In this work, a dispersion treatment of the TiO2 nanoparticles with different average sizes was employed to improve the disper- sion of TiO2 nanoparticles, in order to prepare flexible photoanodes for dye-sensitized solar cells (DSCs) with novel photovol- talc properties at a low temperature. The effects of dispersion treatment on the dispersion of TiO2 nanoparticles, including the viscosities of the binder-free TiO2 paste, the morphologies and textural properties of nanoparticle-TiO2 films, and the photo- voltaic properties of the flexible DSCs, were investigated. Flexible indium-tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrates with sputter deposited Pt were employed as the transparent flexible counter electrodes. A short-circuit photo- current density of 9.62 mA·cm^-2, an open-circuit voltage of 0.757 V, a fill factor of 0.589 and an overall light-to-energy con- version efficiency of 4.29% for the flexible DSCs under AM1.5 illumination of 100 mW·cm^-2 were obtained with dispersion treatment. A 30.8% increment of the energy conversion efficiency for DSCs made by dispersion treatment was obtained com- pared with that made without dispersion treatment.展开更多
Transparent conductive electrodes play a significant role in the fabrication and development of optoelectronic devices. As next generation optoelectronic devices tend towards mobile and wearable devices, the added att...Transparent conductive electrodes play a significant role in the fabrication and development of optoelectronic devices. As next generation optoelectronic devices tend towards mobile and wearable devices, the added attribute of flexibility or stretchability for these electrodes becomes increasingly important. However, mechanical requirements aside, transparent conductive electrodes must still retain high transparency and conductivity, with the metrics for these parameters being compared to the standard, indium tin oxide. In the search to replace indium tin oxide, two materials that have risen to the forefront are carbon nanotubes and silver nanowires due to their high transparency, conductivity, mechanical compliance, and ease of fabrication. This review highlights recent innovations made by our group in electrodes utilizing carbon nanotubes and silver nanowires, in addition to the use of these electrodes in discrete devices and integrated systems.展开更多
To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BF...To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BFO) thin films with extremely large remnant polarization (2Pr = 180 ~aC/cm2) were successfully deposited on glass substrates coated with indium tin oxide using a modified radio frequency magnetron sputtering method. Symmetric and asymmetric cells were constructed to investigate the ferroelectric photovoltaic effect in order to understand the relationship between polarization and photovoltaic response. All examined cells showed polarization-induced photovoltaic effect. Our findings also showed that the ferroelectric photovoltaic effect is highly dependent on the material used for the top electrode and the thickness of the polycrystalline film.展开更多
Small molecule organic solar cells (OSCs) with the structure of indium tin oxide (1TO)/molybdenum trioxide (MOO3) (5 nm)/rubrene (x nm)/fullerene (C70) (y nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthro...Small molecule organic solar cells (OSCs) with the structure of indium tin oxide (1TO)/molybdenum trioxide (MOO3) (5 nm)/rubrene (x nm)/fullerene (C70) (y nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) (6 nm)/aluminum (A1) (150 nm) are fabricated. The thickness of active layer for the devices is investigated in details. The results show that the optimum thicknesses of rubrene layer and C70 layer are 30 nm and 25 nm, respectively. The degradation of the device is also investigated. The result indicates that the open-circuit voltage (Voo) does not change, while the short-circuit current density (Jsc), fill factor (FF) and power conversion efficiency (PCE) decrease continuously with time. The degradation can be attributed to the oxygen in ambient diffusing and infiltrating into the active materials and reacting with C70 in cells, which can result in the increase of interfacial series resistance.展开更多
文摘The typical Haber technical process for industrial NH_(3)production involves plenty of energy-consumption and large quantities of greenhouse gas emission.In contrast,electrochemical N_(2)reduction proffers environment-friendly and energy-efficient avenues to synthesize NH_(3)at mild conditions but demands efficient electrocatalysts for the N_(2)reduction reaction(NRR).Herein we report for the first time that commercial indium-tin oxide glass(ITO/G)can be used as a catalyst electrode toward artificial N_(2)fixation,as it demonstrates excellent selectivity at mild conditions.Such ITO/G delivers excellent NRR performance with a NH_(3)yield of 1.06×10^(-10) mol s^(-1) cm^(-2) and a faradaic efficiency of 6.17%at-0.40 V versus the reversible hydrogen electrode(RHE)in 0.5 M LiClO4.Furthermore,the ITO/G also possesses good electrochemical stability and durability.Finally,the possible reaction mechanism for the NRR on the ITO catalysts was explored using first-principles calculations.
基金Project(2012BAE06B01)supported by the National High Technology Research and Development Program of China
文摘The recovery of indium from waste indium tin oxide (ITO) target has great significance for the economy and environment.Based on our previous study on the optimization of acid leaching technique,the present study focuses on tin removal via zinc substitution and indium recovery from a tin-free leach solution.The results show that when the amount of added zinc powder and reaction time increase,the tin removal effect can be improved.The optimal conditions obtained are as follows:additional content of zinc powder from 20 g/L to 25 g/L,reaction temperature of 60 ℃,and reaction time from 3 h to 4 h.Under this condition,the tin removal rate exceeds 98%,and the tin content in the tin removal solution is lower than 0.05 g/L.After tin removal,the substitution time could be reduced from 3-5 d to 1-2 d by neutralizing the residual acid by using alkaline residue and maintaining the pH value less than 2.The indium recovery rate is also improved when this condition is used.The indium content in the tin residue is reduced to lower than 0.1% and the acid-insoluble β-SnO2 could be obtained via the strong nitric acid leaching of the indium-containing tin residue.Indium could be recovered from ITO with a high purity of 99.995% via electrorefining.
基金Supported by the National Natural Science Foundation of China (10776014) Nanjing University of Science and Technology (NUST) Research Funding
文摘Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.
基金supported by the National Natural Science Foundation of China(No.61274063)
文摘An organic light-emitting diode (OLED) device with high efficiency and brightness is fabricated by inserting CuOJCu dual inorganic buffer layers between indium-tin-oxide (ITO) and hole-transport layer (HTL). The CuOx/Cu buffer layer limits the operating current density obviously, while the brightness and efficiency are both enhanced greatly. The highest brightness of the optimized device is achieved to be 14 000 cd/m2 at current efficiency of 3 cd/A and bias voltage of 15 V, which is about 50% higher than that of the compared device without CuOJCu buffer layer. The highest efficiency is achieved to be 5.9 cd/A at 11.6 V with 3 400 cd/m^2, which is almost twice as high as that of the compared device.
基金the National Natural Science Foundation of China(21173048,21073038)
文摘The simultaneous deposition of rGO and gold nano structures has been achieved by electrodeposition from mixed solutions containing graphene oxide(GO)and a gold precursor.Scanning electron microscope(SEM),Raman spectroscopy and atomic force microscopy(AFM)have been employed to reveal the morphology,uniformity and practical stability of the nanocomposite films on the indium tin oxide(ITO)substrate.The AFM data showed heights of tens of nanometers of the nanocomposite,suggesting that multilayers of rGO with gold nanoparticles had been formed as a result of the electrochemical co-deposition.Differential pulse voltammetry(DPV),as a widely used analytical technique,has been carried out on the rGO-Au/ITO electrode for the quantitative detection of dopamine(DA).The detection limit(S/N=3)for the determination of DA was evaluated as 0.6μM.
基金supported by the National Nature Science Foundation of China (20211130505)the Fundamental Research Funds for the Central Universities of China
文摘An NH2+ ion implantation-modified indium tin oxide film was prepared and the implantation of amino groups on the indium tin oxide substrate was verified by X-ray photoelectron spectroscopy analysis.The gold nanoparticles attached surface could be obtained by self-assembly of different sized colloidal gold nanoparticles onto the NH2+ ion implantation-modified indium tin oxide surface.By scanning electron microscopy and electrochemical techniques,the as-prepared AuNPs attached NH2+ ion implantation-modified indium tin oxide electrode was characterized and compared with bare indium tin oxide electrode.Using a [Fe(CN)6]3 /[Fe(CN)6]4 redox probe,the increasingly facile heterogeneous electron transfer kinetics resulting from the attached gold nanoparticle arrays was observed.The gold nanoparticle arrays exhibited high catalytic activity toward the electro-oxidation of nitric oxide,which could provide electroanalytical application for nitric oxide sensing.
基金supported by the Natural Science Foundation of Guangdong Province, China (Grant Nos. 8251063101000007, 10151063101000009 and 9451063101002082)the Scientific & Technological Plan of Guangdong Province (Grant Nos. 2008B010200004, 2010B010600030 and 2009B011100003)+2 种基金the National Natural Science Foundation of China(Grant Nos. 61078046 and 10904042)the Key Project of Chinese Ministryof Education (Grant No. 210157)the Scientific & Technological Project of Education Department of Hubei Province (Grant No. D20101104)
文摘In order to promote the light output powers of GaN-based light emitting diodes (LEDs), two kinds of novel corrosive liquidshave been developed in this paper to roughen the surface of the indium tin oxide (ITO) current spreading layer of LEDs. As aresult, the textured transparent ITO layer greatly enhanced the external quantum efficiency of the LEDs. Provided that a wafersample was dipped in a kind of corrosive liquid developed by us for only about 60 s, the light output powers of the LEDs canbe promoted by 24.7%, compared with conventional GaN-based LEDs. It is obvious that the presented method is simple, rapidand cost-effective.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2011AA-050522)Sanjiang-yuan Scientific Program of Qinghai Science & Technology Department(Grant No. 2010-N-S03)the Ministry of Science & Technology (MOST) International S&T Cooperation Program of China (Grant No. 2010DFA-64360)
文摘Generally, nanoparticles are easy to aggregate due to their nano sizes, which influence the physical and chemical properties. In this work, a dispersion treatment of the TiO2 nanoparticles with different average sizes was employed to improve the disper- sion of TiO2 nanoparticles, in order to prepare flexible photoanodes for dye-sensitized solar cells (DSCs) with novel photovol- talc properties at a low temperature. The effects of dispersion treatment on the dispersion of TiO2 nanoparticles, including the viscosities of the binder-free TiO2 paste, the morphologies and textural properties of nanoparticle-TiO2 films, and the photo- voltaic properties of the flexible DSCs, were investigated. Flexible indium-tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrates with sputter deposited Pt were employed as the transparent flexible counter electrodes. A short-circuit photo- current density of 9.62 mA·cm^-2, an open-circuit voltage of 0.757 V, a fill factor of 0.589 and an overall light-to-energy con- version efficiency of 4.29% for the flexible DSCs under AM1.5 illumination of 100 mW·cm^-2 were obtained with dispersion treatment. A 30.8% increment of the energy conversion efficiency for DSCs made by dispersion treatment was obtained com- pared with that made without dispersion treatment.
基金supported in part by the Air Force Office of Scientific Research (FA9550-12-1-0074, Dr. Charles Lee)
文摘Transparent conductive electrodes play a significant role in the fabrication and development of optoelectronic devices. As next generation optoelectronic devices tend towards mobile and wearable devices, the added attribute of flexibility or stretchability for these electrodes becomes increasingly important. However, mechanical requirements aside, transparent conductive electrodes must still retain high transparency and conductivity, with the metrics for these parameters being compared to the standard, indium tin oxide. In the search to replace indium tin oxide, two materials that have risen to the forefront are carbon nanotubes and silver nanowires due to their high transparency, conductivity, mechanical compliance, and ease of fabrication. This review highlights recent innovations made by our group in electrodes utilizing carbon nanotubes and silver nanowires, in addition to the use of these electrodes in discrete devices and integrated systems.
基金supported by the National High Technology Research and Development Program(Grant No.2011AA050511)Jiangsu"333"Project,the Priority Academic Program Development of Jiangsu Higher Education Institutions and Research and Innovation Project for College Graduates of Jiangsu Province(Grant No.CXLX13_722)
文摘To study the ferroelectric photovoltaic effect based on polycrystalline films, preparation of high-quality polycrystalline films with low leakage and high remnant polarization is essential. Polycrystalline BiFeO3 (BFO) thin films with extremely large remnant polarization (2Pr = 180 ~aC/cm2) were successfully deposited on glass substrates coated with indium tin oxide using a modified radio frequency magnetron sputtering method. Symmetric and asymmetric cells were constructed to investigate the ferroelectric photovoltaic effect in order to understand the relationship between polarization and photovoltaic response. All examined cells showed polarization-induced photovoltaic effect. Our findings also showed that the ferroelectric photovoltaic effect is highly dependent on the material used for the top electrode and the thickness of the polycrystalline film.
基金supported by the Natural Science Foundation of Guangdong Province of China (No.06025173)
文摘Small molecule organic solar cells (OSCs) with the structure of indium tin oxide (1TO)/molybdenum trioxide (MOO3) (5 nm)/rubrene (x nm)/fullerene (C70) (y nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) (6 nm)/aluminum (A1) (150 nm) are fabricated. The thickness of active layer for the devices is investigated in details. The results show that the optimum thicknesses of rubrene layer and C70 layer are 30 nm and 25 nm, respectively. The degradation of the device is also investigated. The result indicates that the open-circuit voltage (Voo) does not change, while the short-circuit current density (Jsc), fill factor (FF) and power conversion efficiency (PCE) decrease continuously with time. The degradation can be attributed to the oxygen in ambient diffusing and infiltrating into the active materials and reacting with C70 in cells, which can result in the increase of interfacial series resistance.