Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dr...Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.展开更多
Many difficult-to-cut materials such as Ni-base super alloy, titanium alloy, and austenite stainless steel which are used extensively in aerospace generally have high strength-to-weight ratios, high corrosion resistan...Many difficult-to-cut materials such as Ni-base super alloy, titanium alloy, and austenite stainless steel which are used extensively in aerospace generally have high strength-to-weight ratios, high corrosion resistance, high strength retention ability at elevated temperatures, and low thermal conductivity. These characteristics can result in uneven tool wear and chatter vibration. Therefore, determining the appropriate end-milling conditions is more difficult for difficult-to-cut materials than for other materials. There has been much research on the high-speed milling of difficult-to-cut materials, and effective end-milling conditions, end-mill tool shapes, and processing methods have been reported. In addition, irregular pitch and lead end-mills with different helix angles have been developed by tool maker's to reduce chatter vibration, making it easier to perform high-speed milling. However, there have been few reports of slotting information useful for determining appropriate end-milling conditions and processing methods for Ni-base super alloy. The aim of this study is to derive end-milling condition with high efficiency grooving process for Ni-base super alloy (Inconel 718) sheet. Effects of cutting parameters were examined from the view point of cutting resistance, "tool tip maximum temperature and tool flank wear width. As a result from experiments, if the grooving process condition of axial depth of cut is smaller than other conditions on the same material removable rate value, it has been found that it is possible to reduce the tool tip maximum temperature and prolong the tool life.展开更多
基金Supported by National Natural Science Foundation of China (No. 50935001 and No. U0734007)Important National Science and Technology Specific Projects of China (No.,20011ZX04015-031)+1 种基金National High Technology Research and Development Program of China("863"Program, No. 2009AA04Z150)Major State Basic Research Development Program of China ("973"Program, No. 2010CB731703 and No. 2011CB706804)
文摘Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.
文摘Many difficult-to-cut materials such as Ni-base super alloy, titanium alloy, and austenite stainless steel which are used extensively in aerospace generally have high strength-to-weight ratios, high corrosion resistance, high strength retention ability at elevated temperatures, and low thermal conductivity. These characteristics can result in uneven tool wear and chatter vibration. Therefore, determining the appropriate end-milling conditions is more difficult for difficult-to-cut materials than for other materials. There has been much research on the high-speed milling of difficult-to-cut materials, and effective end-milling conditions, end-mill tool shapes, and processing methods have been reported. In addition, irregular pitch and lead end-mills with different helix angles have been developed by tool maker's to reduce chatter vibration, making it easier to perform high-speed milling. However, there have been few reports of slotting information useful for determining appropriate end-milling conditions and processing methods for Ni-base super alloy. The aim of this study is to derive end-milling condition with high efficiency grooving process for Ni-base super alloy (Inconel 718) sheet. Effects of cutting parameters were examined from the view point of cutting resistance, "tool tip maximum temperature and tool flank wear width. As a result from experiments, if the grooving process condition of axial depth of cut is smaller than other conditions on the same material removable rate value, it has been found that it is possible to reduce the tool tip maximum temperature and prolong the tool life.