The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear...The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.展开更多
Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dr...Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.展开更多
Orthogonal turn-milling is a high-efficiency and precision machining method.Its cutting layer directly affects chip formation,cutting forces,and chatter,and further affects tool life,machining quality,etc.We studied T...Orthogonal turn-milling is a high-efficiency and precision machining method.Its cutting layer directly affects chip formation,cutting forces,and chatter,and further affects tool life,machining quality,etc.We studied The cutting layer geometry(CLG)in orthogonal turn-milling with zero eccentricity(OTMZE)is studied to explore orthogonal turn-milling cutting layer formation process.OTMZE principles of motion and formation processes are analyzed statically without considering kinetic influences.Mathematical models of the entrance and exit angles,cutting thickness,and cutting depth are established.In addition,these models are validated experimentally and some influences of cutting parameters on the tool cutting layer are analyzed.The results show that OTMZE cutting layer formation can be divided into two stages,chip shapes are nearly consistent with the simulated CLGs,and the most influencial parameter in affecting the cutting layer is found to be the tool feed per revolation of workpiece fa,followed by the ratio of the tool and workpiece speedsλand the cutting depth ap.These models and results can provide theoretical guidance to clarify formation processes and quantitatively analyze changes in cutting layer geometry during OTMZE.In addition,they offer theoretical guidelines for cutting forces and chatter.展开更多
The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain s...The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.展开更多
The methods for reducing interface aperture inconsistency are studied in NC orbital milling(NCOM)of CFRP/Ti6Al4V laminates with coarse pitch.Comparative experiments show burr,aperture inconsistency and error are typic...The methods for reducing interface aperture inconsistency are studied in NC orbital milling(NCOM)of CFRP/Ti6Al4V laminates with coarse pitch.Comparative experiments show burr,aperture inconsistency and error are typical interface defects.Meanwhile,aperture inconsistency and error are more serious than burr in NCOM with coarse pitch.As one of the major causes of interface defects,axial force and radial force are intensively studied.Based upon the machining principle of orbital milling(OM)and the actual hole-making condition in laminated structures,NCOM experiments with coarse pitch are conducted on CFRP/Ti6Al4V laminates under different cutting conditions.Then,the effects of interlayer clamping,minimal quantity lubrication(MQL),twice milling instead of reaming,and interlayer speed change on interface aperture are analyzed.Research shows that interlayer clamping,interlayer speed change and MQL can effectively reduce out-of-tolerance of interface aperture.When making holes of different diameters with one cutter,axial feed has a greater effect on interface aperture precision than tangential feed.When making holes of the same diameter with different cutters,small diameter cutter will reduce interface aperture precision in a single processing.But the method of“twice milling instead of reaming”can improve the aperture precision effectively.展开更多
基金supported by the National Natural Science Foundation of China(No.51975334)Key R&D Project of Shandong Province(No.2019JMRH0407)the Fundamental Research Funds of Shandong University Grant。
文摘The aramid fiber-reinforced composites(AFRC)can increase the durability of corresponding applications such as aerospace,automobile and other large structural parts,due to the improvement in hardness,heat build-up,wear properties and green environmental protection.However,because of its complex multiphase structure and unique heterogeneity and anisotropy,the poor compression fatigue resistance and the incident surface fibrillation are inevitable.To improve the assembly precision of AFRC,mechanical processing is necessary to meet the dimensional accuracy.This paper focuses on the influence of contour milling parameters on delamination defects during milling of AFRC laminates.A series of milling experiments are conducted and two different kinds of delamination defects including tearing delamination and uncut-off delamination are investigated.A computing method and model based on brittle fracture for the two different types of delamination are established.The results can be used for explaining the mechanism and regularity of delamination defects.The control strategy of delamination defects and evaluation method of finished surface integrity are further discussed.The results are meaningful to optimize cutting parameters,and provide a clear understanding of surface defects control.
基金Supported by National Natural Science Foundation of China (No. 50935001 and No. U0734007)Important National Science and Technology Specific Projects of China (No.,20011ZX04015-031)+1 种基金National High Technology Research and Development Program of China("863"Program, No. 2009AA04Z150)Major State Basic Research Development Program of China ("973"Program, No. 2010CB731703 and No. 2011CB706804)
文摘Compacted graphite cast iron (CG1) has been the material for high-power diesel engines recently, but its increased strength causes poor machinability. In this study, coated and uncoated carbide tools were used in dry milling experiment and FEM simulation to study the machinability of CGI and wear behaviour of tools. The experimental and FEM simulation results show that coated tool has great advantage in dry milling of CGI. SEM and EDS analysis of tool wear indicate the wear morphology and wear mechanism. Adhesive wear is the main mechanism to cause un- coated tool wear, while abrasive wear and delamination wear are the main mechanism to cause coated tool wear. Stress and temperature distribution in FEM simulation help to understand the wear mechanism including the reason for coat- ing peeled off.
基金supported by the National Natural Science Foundation of China (No. 51475233)the Natural Science Foundation of Jiangsu Province(No. BK20171170)+2 种基金the Six Talent Peaks Project of Jiangsu Province(No. JXQC-049)the Major Program of the Natural Science Foundation for Colleges and Universities of Jiangsu Province(No. 19KJA560007)the Project of Jiangsu Key Laboratory of Large Engineering Equipment Detection and Control(No. JSKLEDC201512)
文摘Orthogonal turn-milling is a high-efficiency and precision machining method.Its cutting layer directly affects chip formation,cutting forces,and chatter,and further affects tool life,machining quality,etc.We studied The cutting layer geometry(CLG)in orthogonal turn-milling with zero eccentricity(OTMZE)is studied to explore orthogonal turn-milling cutting layer formation process.OTMZE principles of motion and formation processes are analyzed statically without considering kinetic influences.Mathematical models of the entrance and exit angles,cutting thickness,and cutting depth are established.In addition,these models are validated experimentally and some influences of cutting parameters on the tool cutting layer are analyzed.The results show that OTMZE cutting layer formation can be divided into two stages,chip shapes are nearly consistent with the simulated CLGs,and the most influencial parameter in affecting the cutting layer is found to be the tool feed per revolation of workpiece fa,followed by the ratio of the tool and workpiece speedsλand the cutting depth ap.These models and results can provide theoretical guidance to clarify formation processes and quantitatively analyze changes in cutting layer geometry during OTMZE.In addition,they offer theoretical guidelines for cutting forces and chatter.
基金supported by the National Natural Science Foundation of China(No.51275227)the Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX11_0175)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST201326)
文摘The milling machinabilities of titanium matrix composites were comprehensively evaluated to provide a theoretical basis for cutting parameter determination. Polycrystalline diamond (PCD) tools with different grain sizes and geometries, and carbide tools with and without coatings were used in the experiments. Milling forces, milling temperatures, tool lifetimes, tool wear, and machined surface integrities were investigated. The PCD tool required a primary cutting force 15 % smaller than that of the carbide tool, while the uncoated carbide tool required a primary cutting force 10% higher than that of the TiA1N-eoated tool. A cutting force of 300 N per millimeter of the cutting edge (300 N/mm) was measured. This caused excessive tool chipping. The cutting temperature of the PCD tool was 20%-30% lower than that of the carbide tool, while that of the TiA1N-coated tool was 12% lower than that of the uncoated carbide tool. The cutting temperatures produced when using water-based cooling and minimal quantity lubrication (MQL) were reduced by 100 ~C and 200 ~C, compared with those recorded with dry cutting, respectively. In general, the PCD tool lifetimes were 2--3 times longer than the carbide tool lifetimes. The roughness Ra of the machined surface was less than 0.6μm, and the depth of the machined surface hardened layer was in the range of 0.15-0.25 mm for all of the PCD tools before a flank wear land of 0.2 mm was reached. The PCD tool with a 0.8 mm tool nose radius, 0% rake angle, 10% flank angle, and grain size of (30+2) μm exhibited the best cutting performance. For this specific tool, a lifetime of 16 rain can be expected.
基金Natural Science Research in Jiangsu Province(No.17KJB460008)the 333 Project Research Funding Project in Jiangsu Province(No.BRA2018310)the Innovation Project of Jiangsu Province.
文摘The methods for reducing interface aperture inconsistency are studied in NC orbital milling(NCOM)of CFRP/Ti6Al4V laminates with coarse pitch.Comparative experiments show burr,aperture inconsistency and error are typical interface defects.Meanwhile,aperture inconsistency and error are more serious than burr in NCOM with coarse pitch.As one of the major causes of interface defects,axial force and radial force are intensively studied.Based upon the machining principle of orbital milling(OM)and the actual hole-making condition in laminated structures,NCOM experiments with coarse pitch are conducted on CFRP/Ti6Al4V laminates under different cutting conditions.Then,the effects of interlayer clamping,minimal quantity lubrication(MQL),twice milling instead of reaming,and interlayer speed change on interface aperture are analyzed.Research shows that interlayer clamping,interlayer speed change and MQL can effectively reduce out-of-tolerance of interface aperture.When making holes of different diameters with one cutter,axial feed has a greater effect on interface aperture precision than tangential feed.When making holes of the same diameter with different cutters,small diameter cutter will reduce interface aperture precision in a single processing.But the method of“twice milling instead of reaming”can improve the aperture precision effectively.