Heavy metal pollution is one of the most important environmental problems today.Biosorption is an innovative tech-nology that employs biological materials to accumulate heavy metals from waste water through metabolic ...Heavy metal pollution is one of the most important environmental problems today.Biosorption is an innovative tech-nology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemi-cal pathways of uptake.Even though several physical and chemical methods are available for removal of heavy metals,currently many biological materials such as bacteria,algae,yeasts and fungi have been widely used due to their good performance,low cost and large quantity of availability.The aim of the present study is to explore the biosorption of toxic heavy metals,Cr(VI),Cr(III),Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii(brown) and Caulerpa racemosa(green).Biosorption of algal biomass was found to be biomass concentration-and pH-dependent,while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1.S.wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1,followed by C.racemosa with the maximal biosorption at 30 g L-1.S.wightii showed 78% biosorption of Cr(VI),Cr(III),Pb(II) and Cd(II) ions.C.racemosa exhibited 85% biosorption of Cd(II) and Cr(VI),and 50% biosorption of Cr(III) and Pb(II).The results of our study suggest that seaweed biomass can be used efficiently for展开更多
The adsorption onto bentonite of three heavy metals often found in industrial effluents (chromium, iron ana zinc) was studied. The kinetic equilibrium data show that the bentonite fixes more chromium(VI) than iron...The adsorption onto bentonite of three heavy metals often found in industrial effluents (chromium, iron ana zinc) was studied. The kinetic equilibrium data show that the bentonite fixes more chromium(VI) than iron(II) and zinc(II). The adsorption capacities of heavy metals in equilibrium with the bentonite are influenced by the stirring speed and environment temperature. The thermodynamic parameters obtained indicate that the adsorption of heavy metals onto bentonite is a spontaneous and exothermic process.展开更多
文摘Heavy metal pollution is one of the most important environmental problems today.Biosorption is an innovative tech-nology that employs biological materials to accumulate heavy metals from waste water through metabolic process or physicochemi-cal pathways of uptake.Even though several physical and chemical methods are available for removal of heavy metals,currently many biological materials such as bacteria,algae,yeasts and fungi have been widely used due to their good performance,low cost and large quantity of availability.The aim of the present study is to explore the biosorption of toxic heavy metals,Cr(VI),Cr(III),Pb(II) and Cd(II) by algal biomass obtained from algae Sargassum wightii(brown) and Caulerpa racemosa(green).Biosorption of algal biomass was found to be biomass concentration-and pH-dependent,while the maximal biosorption was found at pH 5.0 and with the metal concentration of 100 mg L-1.S.wightii showed the maximal metal biosorption at the biomass concentration of 25 g L-1,followed by C.racemosa with the maximal biosorption at 30 g L-1.S.wightii showed 78% biosorption of Cr(VI),Cr(III),Pb(II) and Cd(II) ions.C.racemosa exhibited 85% biosorption of Cd(II) and Cr(VI),and 50% biosorption of Cr(III) and Pb(II).The results of our study suggest that seaweed biomass can be used efficiently for
文摘The adsorption onto bentonite of three heavy metals often found in industrial effluents (chromium, iron ana zinc) was studied. The kinetic equilibrium data show that the bentonite fixes more chromium(VI) than iron(II) and zinc(II). The adsorption capacities of heavy metals in equilibrium with the bentonite are influenced by the stirring speed and environment temperature. The thermodynamic parameters obtained indicate that the adsorption of heavy metals onto bentonite is a spontaneous and exothermic process.