The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the p...The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the pollution indices.Soil samples(0-20 cm depth) were collected at various distances from the BCM.In the present research,heavy metals(Cr and Ni) in soil samples were analyzed by atomic absorption spectrometry to detect their concentrations and contour maps were produced to explain the metal spatial distribution.Also,the degree of metal pollution was quantified.The results indicate that the soils in the studied area are contaminated by Cr and Ni.The corresponding concentrations for Cr and Ni are(156.19±24.45) and(321.7±133.27) mg/kg,respectively,which exceed the corresponding maximum allowable concentrations in soils.The different indices demonstrate that soils around chromite mine are significantly contaminated with Cr and Ni,suggesting several times higher levels of toxic metals than normal ranges.The above results revealed that the heavy metal concentrations increase with increasing the distance from the mine and mining pollutants can be transported to long distances from their sources.展开更多
Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40μs and pulse times 5) and then regenerated on YEPD me...Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40μs and pulse times 5) and then regenerated on YEPD media for achieving new genotypes with higher chromium loading capacity. A target fusant RHJ-004 was screened out by its chromium resistance and chromium-sorbing capacity tests for further research. The comparative study of applicability shows that the fusant has better performance than its parent strains in respect of solution pH, biomass concentration and chromium loading capacity. Especially for treating low concentration Cr(VI) (〈20 mg/L), above 80% chromium is sequestered from the aqueous phase at pH 1-9. Atomic force microscopy (AFM) visualizes the distribution of chromium on the binding sites of the cells, suggesting that the altered surface structure and intracellular constitutes of the fusant associate with its increased biosorption capacity. The rapid biosorption processes of chromium foUow the Langmuir model well.展开更多
Safe application of chromium (Cr)-containing organic industrial wastes to soil requires considering the ability of the soil to adsorb Cr. In this study, the maximum Cr adsorption capacity was assessed for the bulk s...Safe application of chromium (Cr)-containing organic industrial wastes to soil requires considering the ability of the soil to adsorb Cr. In this study, the maximum Cr adsorption capacity was assessed for the bulk samples and their clay and iron-free clay fractions of four subtropical soils differing in mineralogy. To this end, the samples were supplied with Cr(Ⅲ) nitrate solutions at pH 4.5 or 5.5. The results of Cr(Ⅲ) adsorption fitted to a Freundlich equation and the adsorption capacity was positively correlated with soil organic matter and iron oxide contents. The clay fractions adsorbed more Cr per unit mass than the bulk soils and the iron-free clay fractions. The Cr(Ⅲ) adsorption capacity increased with increasing soil pH due to more charges on adsorbing surfaces. Our results suggest that the soils rich in organic matter and iron oxides and having a pH above 4.5 are suitable for application of Cr(Ⅲ)-loaded industrial wastes.展开更多
文摘The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the pollution indices.Soil samples(0-20 cm depth) were collected at various distances from the BCM.In the present research,heavy metals(Cr and Ni) in soil samples were analyzed by atomic absorption spectrometry to detect their concentrations and contour maps were produced to explain the metal spatial distribution.Also,the degree of metal pollution was quantified.The results indicate that the soils in the studied area are contaminated by Cr and Ni.The corresponding concentrations for Cr and Ni are(156.19±24.45) and(321.7±133.27) mg/kg,respectively,which exceed the corresponding maximum allowable concentrations in soils.The different indices demonstrate that soils around chromite mine are significantly contaminated with Cr and Ni,suggesting several times higher levels of toxic metals than normal ranges.The above results revealed that the heavy metal concentrations increase with increasing the distance from the mine and mining pollutants can be transported to long distances from their sources.
基金Project(NSFC-GDNSF U0933002) supported by the Joint Funds of the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province,ChinaProject(50978122) supported by the National Natural Science Foundation of China
文摘Protoplasts from Candida tropicalis and Candida lipolytica were fused under an optimized electrofusion (electrical pulse strength 6 kV/cm, pulse duration time 40μs and pulse times 5) and then regenerated on YEPD media for achieving new genotypes with higher chromium loading capacity. A target fusant RHJ-004 was screened out by its chromium resistance and chromium-sorbing capacity tests for further research. The comparative study of applicability shows that the fusant has better performance than its parent strains in respect of solution pH, biomass concentration and chromium loading capacity. Especially for treating low concentration Cr(VI) (〈20 mg/L), above 80% chromium is sequestered from the aqueous phase at pH 1-9. Atomic force microscopy (AFM) visualizes the distribution of chromium on the binding sites of the cells, suggesting that the altered surface structure and intracellular constitutes of the fusant associate with its increased biosorption capacity. The rapid biosorption processes of chromium foUow the Langmuir model well.
文摘Safe application of chromium (Cr)-containing organic industrial wastes to soil requires considering the ability of the soil to adsorb Cr. In this study, the maximum Cr adsorption capacity was assessed for the bulk samples and their clay and iron-free clay fractions of four subtropical soils differing in mineralogy. To this end, the samples were supplied with Cr(Ⅲ) nitrate solutions at pH 4.5 or 5.5. The results of Cr(Ⅲ) adsorption fitted to a Freundlich equation and the adsorption capacity was positively correlated with soil organic matter and iron oxide contents. The clay fractions adsorbed more Cr per unit mass than the bulk soils and the iron-free clay fractions. The Cr(Ⅲ) adsorption capacity increased with increasing soil pH due to more charges on adsorbing surfaces. Our results suggest that the soils rich in organic matter and iron oxides and having a pH above 4.5 are suitable for application of Cr(Ⅲ)-loaded industrial wastes.