为了提高电极的析氯活性并降低生产成本,采用热分解法制备低Ir掺杂的Ti/IrRuSnSbO_(x)电极,通过材料表征和电化学测试研究了电极的微观结构和电化学性能。结果表明,在0~30%范围内,随着Ir摩尔分数的增加,表面裂纹逐渐增多且加深,增大了...为了提高电极的析氯活性并降低生产成本,采用热分解法制备低Ir掺杂的Ti/IrRuSnSbO_(x)电极,通过材料表征和电化学测试研究了电极的微观结构和电化学性能。结果表明,在0~30%范围内,随着Ir摩尔分数的增加,表面裂纹逐渐增多且加深,增大了内表面活性面积占比,而析氯活性和析氯效率均先升高后降低,其中,掺杂摩尔分数10%的电极具有最低的电荷转移电阻、最高的反应速率,电流密度为10 mA/cm^(2)时析氯电位为1.118 V vs.SCE,析氯效率为99.6%。展开更多
Exploration of cost-effective electrocatalysts for boosting the overall water-splitting efficiency is vitally important for obtaining renewable fuels such as hydrogen.Here,earth-abundant CoxNi1-xO nanowire arrays were...Exploration of cost-effective electrocatalysts for boosting the overall water-splitting efficiency is vitally important for obtaining renewable fuels such as hydrogen.Here,earth-abundant CoxNi1-xO nanowire arrays were used as a structural framework to dilute Ir incorporation for fabricating electrocatalysts for water splitting.Minimal Ir-incorporated CoxNi1-xO nanowire arrays were synthesized through the facile hydrothermal method with subsequent calcination by using Ni foam(NF)as both the substrate and source of Ni.The electrocatalytic water-splitting performance was found to crucially depend on the Ir content of the parent CoxNi1-xO nanowire arrays.As a result,for a minimal Ir content,as low as 0.57 wt%,the obtained Ir-CoxNi1-xO/NF electrodes exhibited optimal catalytic activity in terms of a low overpotential of 260 mV for the oxygen evolution reaction and 53 mV for the hydrogen evolution reaction at 10 mA cm?2 in 1 mol L–1 KOH.When used as bifunctional electrodes in water splitting,the current density of 10 mA cm–2 was obtained at a low cell voltage of 1.55 V.Density functional theory calculations revealed that the Ir-doped CoxNi1-xO arrays exhibited enhanced electrical conductivity and low Gibbs free energy,which contributed to the improved electrocatalytic activity.The present study presents a new strategy for the development of transition metal oxide electrocatalysts with low levels of Ir incorporation for efficient water splitting.展开更多
Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective ...Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.展开更多
文摘为了提高电极的析氯活性并降低生产成本,采用热分解法制备低Ir掺杂的Ti/IrRuSnSbO_(x)电极,通过材料表征和电化学测试研究了电极的微观结构和电化学性能。结果表明,在0~30%范围内,随着Ir摩尔分数的增加,表面裂纹逐渐增多且加深,增大了内表面活性面积占比,而析氯活性和析氯效率均先升高后降低,其中,掺杂摩尔分数10%的电极具有最低的电荷转移电阻、最高的反应速率,电流密度为10 mA/cm^(2)时析氯电位为1.118 V vs.SCE,析氯效率为99.6%。
基金financially supported by the National Natural Science Foundation of China (51772255)the Hunan Provincial Innovation Foundation For Postgraduate (CX2017B274)+1 种基金the National Basic Research Program of China (2015CB921103)the Program for Changjiang Scholars and Innovative Research Team in University (IRT13093)~~
文摘Exploration of cost-effective electrocatalysts for boosting the overall water-splitting efficiency is vitally important for obtaining renewable fuels such as hydrogen.Here,earth-abundant CoxNi1-xO nanowire arrays were used as a structural framework to dilute Ir incorporation for fabricating electrocatalysts for water splitting.Minimal Ir-incorporated CoxNi1-xO nanowire arrays were synthesized through the facile hydrothermal method with subsequent calcination by using Ni foam(NF)as both the substrate and source of Ni.The electrocatalytic water-splitting performance was found to crucially depend on the Ir content of the parent CoxNi1-xO nanowire arrays.As a result,for a minimal Ir content,as low as 0.57 wt%,the obtained Ir-CoxNi1-xO/NF electrodes exhibited optimal catalytic activity in terms of a low overpotential of 260 mV for the oxygen evolution reaction and 53 mV for the hydrogen evolution reaction at 10 mA cm?2 in 1 mol L–1 KOH.When used as bifunctional electrodes in water splitting,the current density of 10 mA cm–2 was obtained at a low cell voltage of 1.55 V.Density functional theory calculations revealed that the Ir-doped CoxNi1-xO arrays exhibited enhanced electrical conductivity and low Gibbs free energy,which contributed to the improved electrocatalytic activity.The present study presents a new strategy for the development of transition metal oxide electrocatalysts with low levels of Ir incorporation for efficient water splitting.
文摘Supported Ir catalysts were prepared using layered double hydrotalcite‐like materials,such as Mg3Al1-xFex,containing Fe and Al species in varying amounts as supports.These Ir catalysts were applied for the selective hydrogenation of cinnamaldehyde(CAL).When x was changed from 0(Ir/Mg3Al)to 1(Ir/Mg3Fe),the rate of CAL hydrogenation reached a maximum at approximately x=0.25,while the selectivity to unsaturated alcohol,i.e.,cinnamyl alcohol,monotonously increased from 44.9%to 80.3%.Meanwhile,the size of the supported Ir particles did not change significantly with x,remaining at 1.7-0.2 nm,as determined by transmission electron microscopy.The chemical state of Ir and Fe species in the Ir/Mg3Al1-xFex catalysts was examined by temperature programmed reduction by H2 and X‐ray photoelectron spectroscopy.The surface of the supported Ir particles was also examined through the in‐situ diffuse reflectance infrared Fourier‐transform of a probe molecule of CO.On the basis of these characterization results,the effects of Fe doping to Mg3Al on the structural and catalytic properties of Ir particles in selective CAL hydrogenation were discussed.The significant factors are the electron transfer from Fe2+in the Mg3Al1–xFex support to the dispersed Ir particles and the surface geometry.