Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used m...Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61335010,61275145,61275200&61275145)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2013AA032204)+1 种基金the Brain Vanguard Technology Crossover Cooperation Projects of Chinese Academy of Sciences(GrantNo.KJZD-EW-L11-01)the Recruitment Program for Young Professionals
文摘Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.