研究了Ag Sn O2类材料单体触点在镦制过程中的开裂问题,并将银丝材料拉伸试验曲线转化成真应力、应变数据,拟合得到银丝材料流变应力数学模型。应用有限元方法,模拟了银单体触点的冷镦成形过程,得到了冷镦成形过程中的等效应变、应力分...研究了Ag Sn O2类材料单体触点在镦制过程中的开裂问题,并将银丝材料拉伸试验曲线转化成真应力、应变数据,拟合得到银丝材料流变应力数学模型。应用有限元方法,模拟了银单体触点的冷镦成形过程,得到了冷镦成形过程中的等效应变、应力分布情况。研究结果表明,拉应力越靠近外层越大,而径向压应力则越靠近外层越小,变形物体的单位压力从外向内逐渐增大,因此,触点最大直径处为易开裂位置。此外,准确预测了成形过程中材料产生裂纹缺陷的位置及裂纹程度,当变形达到材料Damage值时,裂纹开始形成,Damage值随变形程度的增加而上升。通过试验,对开裂模拟结果进行了验证,模拟结果与试验吻合较好。展开更多
文摘研究了Ag Sn O2类材料单体触点在镦制过程中的开裂问题,并将银丝材料拉伸试验曲线转化成真应力、应变数据,拟合得到银丝材料流变应力数学模型。应用有限元方法,模拟了银单体触点的冷镦成形过程,得到了冷镦成形过程中的等效应变、应力分布情况。研究结果表明,拉应力越靠近外层越大,而径向压应力则越靠近外层越小,变形物体的单位压力从外向内逐渐增大,因此,触点最大直径处为易开裂位置。此外,准确预测了成形过程中材料产生裂纹缺陷的位置及裂纹程度,当变形达到材料Damage值时,裂纹开始形成,Damage值随变形程度的增加而上升。通过试验,对开裂模拟结果进行了验证,模拟结果与试验吻合较好。