Ag2O-TiO 2/sepiolite heterostructure composites were synthesized by a simple two-step method at low temperatures(100–450 °C). Acid red G aqueous solution and gaseous formaldehyde were chosen as model organic p...Ag2O-TiO 2/sepiolite heterostructure composites were synthesized by a simple two-step method at low temperatures(100–450 °C). Acid red G aqueous solution and gaseous formaldehyde were chosen as model organic pollutants to evaluate the photocatalytic performance of the as-prepared composites. The results showed that the Ag2O-TiO 2/sepiolite exhibited enhanced photocatalytic activity over pure Ag2O-TiO 2,TiO 2/sepiolite,and Ag2O/sepiolite under visible-light irradiation(λ 420 nm). The excellent photocatalytic efficiency of these composites can be ascribed to the synergistic effect between the heterojunction and the porous structure of the clay layers,which induced high adsorption and efficient charge separation. In addition,the active species involved in the degradation reaction have been investigated by photoluminescence spectroscopy and quenching experiments. A possible photocatalytic degradation mechanism of acid red G dye by the Ag2O-TiO 2/sepiolite composite is also discussed.展开更多
Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid i...Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid interfacial charge transfer. However,the present preparation methods usually include complicated and multistep procedures,which can cause damage to the hollow nanostructures. In this paper,a facile template-induced synthesis,based on a template-directed deposition and in situ template-sacrificial dissolution,was employed to prepare Ag-modified TiO 2(Ag/TiO 2) hollow octahedra using Ag2 O octahedra as templates and TiF 4 as the precursor. In the synthetic strategy,the shells of TiO 2 hollow octahedra were formed by coating TiO 2 nanoparticles on the surface of Ag2 O templates based on the template-directed deposition. Simultaneously,the Ag2 O templates can be in situ removed by dissolving the Ag2 O octahedral template in HF solution produced via the hydrolysis reaction of TiF 4 in the reaction system. In addition,Ag nanoparticles were deposited on the inside and outside surfaces of TiO 2 shells by effectively using the photosensitive properties of Ag2 O and Ag+ ions under light irradiation,along with the formation of TiO 2 hollow octahedra. The Ag/TiO 2 hollow octahedra exhibited high photocatalytic activity because of their(1) short diffusion distances between photogenerated electrons and holes because of the thin shells of Ag/TiO 2 hollow octahedral,(2) deposition of Ag nanoparticles on the inside and outside surfaces of TiO 2 shells,and(3) rapid interfacial charge transfer between TiO 2 shells and Ag nanoparticles. This work may also provide new insights into preparing other Ag-modified and hollow nanostructured photocatalysts.展开更多
A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious m...A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field.展开更多
Photocatalytic reduction method using TiO2 suspension for removal as well as possibly recovery of silver (Ag(I)) in the presence of Cu(II) is examined. The photocatalytic reduction was performed by batch techniq...Photocatalytic reduction method using TiO2 suspension for removal as well as possibly recovery of silver (Ag(I)) in the presence of Cu(II) is examined. The photocatalytic reduction was performed by batch technique in a closed reactor equipped with UV lamp. The concentration of unreduced Ag(I) was analyzed by atomic absorption spectrophotometry method. The research results indicate that Ag(I) in the solution can be removed and recovered effectively as silver metal Ag(0) deposited on the surface of TiO2 for photocatalytic reduction. In addition, the presence of Cu(II) ion with increasing concentration leads to a proportional decline in Ag(I) photoreduction due to the prominent competition in the adsorption on the surface of TiO2. The effectiveness of Ag(I) ion photoreduction in the presence of Cu(II) ion is strongly influenced by solution pH and the highest photoreduction is obtained at pH 5 - 8, which is related with the speciation ofAg(I), TiO2 surface as well as Cu(II) in the solution.展开更多
Uniform flower-like TiO2 coated Au nanostars and core-shell Au@Ag nanostars with different amounts of Ag coating were prepared through a facile method by hydrolysis of TiF4 under an acidic environment. The photocataly...Uniform flower-like TiO2 coated Au nanostars and core-shell Au@Ag nanostars with different amounts of Ag coating were prepared through a facile method by hydrolysis of TiF4 under an acidic environment. The photocatalytic capability of these flower-like nanocomposites under visible light irradiation was found to be enhanced by up to 4.7-fold compared to commercial P25 TiO2 nanoparticles. The enhanced photocatalytic activity was ascribed to improved light absorption and hot electron inj ection from the photo-excited Au@Ag core to the TiO2 shell.展开更多
In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block co...In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block copolymer shells as templates. The photocatalytic activities of the Ag Au-TiO2 NPs on the photodecomposition of methylene blue(MB) are investigated. The Ag Au-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.展开更多
基金supported by the National Key Technology R&D Program of China(2012BAJ25B02-03)~~
文摘Ag2O-TiO 2/sepiolite heterostructure composites were synthesized by a simple two-step method at low temperatures(100–450 °C). Acid red G aqueous solution and gaseous formaldehyde were chosen as model organic pollutants to evaluate the photocatalytic performance of the as-prepared composites. The results showed that the Ag2O-TiO 2/sepiolite exhibited enhanced photocatalytic activity over pure Ag2O-TiO 2,TiO 2/sepiolite,and Ag2O/sepiolite under visible-light irradiation(λ 420 nm). The excellent photocatalytic efficiency of these composites can be ascribed to the synergistic effect between the heterojunction and the porous structure of the clay layers,which induced high adsorption and efficient charge separation. In addition,the active species involved in the degradation reaction have been investigated by photoluminescence spectroscopy and quenching experiments. A possible photocatalytic degradation mechanism of acid red G dye by the Ag2O-TiO 2/sepiolite composite is also discussed.
基金supported by the National Natural Science Foundation of China(5120839621277107+5 种基金21477094and 51472192)the Program for New Century Excellent Talents in University(NCET-13-0944)the Fundamental Research Funds for the Central Universities(WUT 2014-1a-0032014-VII-037and 2015IB002)~~
文摘Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid interfacial charge transfer. However,the present preparation methods usually include complicated and multistep procedures,which can cause damage to the hollow nanostructures. In this paper,a facile template-induced synthesis,based on a template-directed deposition and in situ template-sacrificial dissolution,was employed to prepare Ag-modified TiO 2(Ag/TiO 2) hollow octahedra using Ag2 O octahedra as templates and TiF 4 as the precursor. In the synthetic strategy,the shells of TiO 2 hollow octahedra were formed by coating TiO 2 nanoparticles on the surface of Ag2 O templates based on the template-directed deposition. Simultaneously,the Ag2 O templates can be in situ removed by dissolving the Ag2 O octahedral template in HF solution produced via the hydrolysis reaction of TiF 4 in the reaction system. In addition,Ag nanoparticles were deposited on the inside and outside surfaces of TiO 2 shells by effectively using the photosensitive properties of Ag2 O and Ag+ ions under light irradiation,along with the formation of TiO 2 hollow octahedra. The Ag/TiO 2 hollow octahedra exhibited high photocatalytic activity because of their(1) short diffusion distances between photogenerated electrons and holes because of the thin shells of Ag/TiO 2 hollow octahedral,(2) deposition of Ag nanoparticles on the inside and outside surfaces of TiO 2 shells,and(3) rapid interfacial charge transfer between TiO 2 shells and Ag nanoparticles. This work may also provide new insights into preparing other Ag-modified and hollow nanostructured photocatalysts.
基金supported by the National Natural Science Foundation of China (51478370)the Engineering and Physical Sciences Research Council of UK–Natural Science Foundation of China (EPSRC-NSFC) International Joint Research Project (51461135005)~~
文摘A TiO2 photocatalyst is coated on the surface of a zeolite fly ash bead(ZFAB) to improve its dispersability and exposure degree in a cement system.The application of Ag particles in TiO2/ZFAB modified cementitious materials is to further enhance the photocatalytic performance.Various Ag@TiO2/ZFAB modified cementitious specimens with different Ag dosages are prepared and the characteristics and photocatalytic performance of the prepared samples are investigated.It is observed that the multi-level pore structure of ZFAB can improve the exposure degree of TiO2 in a cement system and is also useful to enhance the photocatalytic efficiency.With an increment of the amounts of Ag particles in the TiO2/ZFAB modified cementitious samples,the photocatalytic activities increased first and then decreased.The optimal Ag@TiO2/ZFAB modified cementitious sample reveals the maximum reaction rate constant for degrading benzene(9.91×10^-3 min^-1),which is approximately 3 and 10 times higher than those of TiO2/ZFAB and TiO2 modified samples,respectively.This suggests that suitable Ag particles coupled with a ZFAB carrier could effectively enhance the photocatalytic effects and use of TiO2 in a cement system.Thus,ZFAB as a carrier could provide a potential method for a high efficiency engineering application of TiO2 in the construction field.
文摘Photocatalytic reduction method using TiO2 suspension for removal as well as possibly recovery of silver (Ag(I)) in the presence of Cu(II) is examined. The photocatalytic reduction was performed by batch technique in a closed reactor equipped with UV lamp. The concentration of unreduced Ag(I) was analyzed by atomic absorption spectrophotometry method. The research results indicate that Ag(I) in the solution can be removed and recovered effectively as silver metal Ag(0) deposited on the surface of TiO2 for photocatalytic reduction. In addition, the presence of Cu(II) ion with increasing concentration leads to a proportional decline in Ag(I) photoreduction due to the prominent competition in the adsorption on the surface of TiO2. The effectiveness of Ag(I) ion photoreduction in the presence of Cu(II) ion is strongly influenced by solution pH and the highest photoreduction is obtained at pH 5 - 8, which is related with the speciation ofAg(I), TiO2 surface as well as Cu(II) in the solution.
基金supportedby the Ministry of Education of Singapore(R-143-000-607-112)the National Natural Science Foundation of China(21673155)
文摘Uniform flower-like TiO2 coated Au nanostars and core-shell Au@Ag nanostars with different amounts of Ag coating were prepared through a facile method by hydrolysis of TiF4 under an acidic environment. The photocatalytic capability of these flower-like nanocomposites under visible light irradiation was found to be enhanced by up to 4.7-fold compared to commercial P25 TiO2 nanoparticles. The enhanced photocatalytic activity was ascribed to improved light absorption and hot electron inj ection from the photo-excited Au@Ag core to the TiO2 shell.
基金supported by the National Natural Science Foundation of China(Nos.51173069 and 51473068)
文摘In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block copolymer shells as templates. The photocatalytic activities of the Ag Au-TiO2 NPs on the photodecomposition of methylene blue(MB) are investigated. The Ag Au-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.