Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver to...Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.展开更多
This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on ox...This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on oxygen‐vacancy‐containing BiVO4.The morphology of the BiVO4is olive shaped,and it has a uniform size distribution.The BiVO4possesses a high oxygen vacancy density,and the resulting Ag nanoparticle‐BiVO4catalyst exhibits higher photocatalytic activity than BiVO4.The RhB degradation by the Ag nanoparticle‐BiVO4catalyst is99%after100min of simulated solar irradiation.BiVO4containing oxygen vacancies as a rationally designed support extends the catalyst response into the near‐infrared region,and facilitates the trapping and transfer of plasmonic hot electrons.The enhanced photocatalytic efficiency is attributed to charge transfer from the BiVO4to Ag nanoparticles,and surface plasmon resonance of the Ag nanoparticles.These insights into electron‐hole separation and charge transfer may arouse interest in solar‐driven wastewater treatment and water splitting.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
In this work, BiV04 powders were synthesized by a sol-gel method, and the BiV04 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap energy, which a...In this work, BiV04 powders were synthesized by a sol-gel method, and the BiV04 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap energy, which are respon- sible for the observed photocatalyst behavior, were investigated by UV/vis diffuse reflectance spectroscopy (DRS) for pure and silver oxide loaded BiV04. Pbotocatalytic properties of the prepared samples were examined by studying the degradation of the methyl orange. When using NaCI02 as an electron acceptor, the possible photocatalytic mech- anism has been discussed by photocatalytic reactions. With the help of electron acceptor, the results show clearly that the BiV04 loaded silver oxide exhibited superior photocatalytic activity in simulated dye wastewater treatment.展开更多
基金supported by the National Natural Science Foundation of China (21677086, 21407092, 21377067, 21577078)the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021)~~
文摘Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.
基金supported by the National Natural Science Foundation of China(21476033)~~
文摘This study investigates the photodegradation of the organic dye rhodamine B by Ag‐nanoparticlecontaining BiVO4catalysts under different irradiation conditions.The catalysts consist of Ag nanoparticles deposited on oxygen‐vacancy‐containing BiVO4.The morphology of the BiVO4is olive shaped,and it has a uniform size distribution.The BiVO4possesses a high oxygen vacancy density,and the resulting Ag nanoparticle‐BiVO4catalyst exhibits higher photocatalytic activity than BiVO4.The RhB degradation by the Ag nanoparticle‐BiVO4catalyst is99%after100min of simulated solar irradiation.BiVO4containing oxygen vacancies as a rationally designed support extends the catalyst response into the near‐infrared region,and facilitates the trapping and transfer of plasmonic hot electrons.The enhanced photocatalytic efficiency is attributed to charge transfer from the BiVO4to Ag nanoparticles,and surface plasmon resonance of the Ag nanoparticles.These insights into electron‐hole separation and charge transfer may arouse interest in solar‐driven wastewater treatment and water splitting.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金Supported by the Education Department of Heilongjiang Province(12541111)the Program for Innovative Research Team in University of Heilongjiang Province(2013TD008)the Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province and Harbin University of Science and Technology and the Technology and Innovative Experimental Project of Harbin University of Science and Technology
文摘In this work, BiV04 powders were synthesized by a sol-gel method, and the BiV04 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap energy, which are respon- sible for the observed photocatalyst behavior, were investigated by UV/vis diffuse reflectance spectroscopy (DRS) for pure and silver oxide loaded BiV04. Pbotocatalytic properties of the prepared samples were examined by studying the degradation of the methyl orange. When using NaCI02 as an electron acceptor, the possible photocatalytic mech- anism has been discussed by photocatalytic reactions. With the help of electron acceptor, the results show clearly that the BiV04 loaded silver oxide exhibited superior photocatalytic activity in simulated dye wastewater treatment.