期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的铸件字符识别
1
作者 常秀 《运筹与模糊学》 2023年第2期1388-1400,共13页
针对铸件字符人工识别效率低、人工记录易出错,现有的字符识别方法无法应对工业场景下复杂的铸件字符,且场景本身存在极端光照、遮挡、模糊的问题,提出了改进的PGNet网络。该网络在识别水平文本的同时,也能很好地识别弯曲文本和不规则... 针对铸件字符人工识别效率低、人工记录易出错,现有的字符识别方法无法应对工业场景下复杂的铸件字符,且场景本身存在极端光照、遮挡、模糊的问题,提出了改进的PGNet网络。该网络在识别水平文本的同时,也能很好地识别弯曲文本和不规则文本。针对铸件字符数据量不足的情况,加入STN矫正模块进行数据增强,不同的实验结果表明,对准召的提升大于1%。此外,通过优化PGNet网络的损失函数,降低了误识别率。通过对PGNet网络的改进,在一定程度上解决了上述问题,使得铸件字符的溯源与管控过程更加准确和高效。 展开更多
关键词 工业智能 不规则文本 弯曲文本 PGNet网络 铸件字符识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部