Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as...Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as-cast Mg-Ce and Mg-Nd alloys are as good as those of typical die cast AZ91 alloy and the heat resistant WE43 alloy. In Nd-containing alloys, the precipitated phase Mg_ 12Nd contributes significantly to age hardening. The mechanical properties of extruded alloys are improved obviously compared with those of as-cast alloys. The ultimate strength is 257.8MPa for extruded Mg-Ce alloy and 265.6MPa for extruded Mg-Nd alloy. Extrusion is a useful method to improve both the strengths and elongations of the two experimental alloys at both ambient and elevated temperatures. The grain refinement and precipitation strengthening are the main strengthening mechanisms in the alloys. Tensile fracture surfaces show a dimple pattern after extruding and therefore reflect an improved elongation.展开更多
A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casti...A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed.展开更多
文摘Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as-cast Mg-Ce and Mg-Nd alloys are as good as those of typical die cast AZ91 alloy and the heat resistant WE43 alloy. In Nd-containing alloys, the precipitated phase Mg_ 12Nd contributes significantly to age hardening. The mechanical properties of extruded alloys are improved obviously compared with those of as-cast alloys. The ultimate strength is 257.8MPa for extruded Mg-Ce alloy and 265.6MPa for extruded Mg-Nd alloy. Extrusion is a useful method to improve both the strengths and elongations of the two experimental alloys at both ambient and elevated temperatures. The grain refinement and precipitation strengthening are the main strengthening mechanisms in the alloys. Tensile fracture surfaces show a dimple pattern after extruding and therefore reflect an improved elongation.
基金Project(2008T142) supported by the Innovation Team Program of Liaoning Provincial Department of Education of China
文摘A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed.