In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile desig...In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.展开更多
This paper concentrates on the research of plaster-bonded moulding matertal with coal mine waste as its major filler and its process. Having made a careful investigation of various factorsaffecting properties of the m...This paper concentrates on the research of plaster-bonded moulding matertal with coal mine waste as its major filler and its process. Having made a careful investigation of various factorsaffecting properties of the moulding material, the authors optimize several new formulations of thismaterial and the prarees which are inexpensive, convenient in application, precise in bokling sizoof moulds.展开更多
基金Project (2008ZE53042) supported by National Aerospace Science Foundation of China
文摘In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.
文摘This paper concentrates on the research of plaster-bonded moulding matertal with coal mine waste as its major filler and its process. Having made a careful investigation of various factorsaffecting properties of the moulding material, the authors optimize several new formulations of thismaterial and the prarees which are inexpensive, convenient in application, precise in bokling sizoof moulds.