期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mg-Nd-Gd-Zn-Zr镁合金铸造组织与力学性能 被引量:9
1
作者 李杰华 介万奇 杨光昱 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第1期101-105,共5页
采用正交试验方法,通过砂型铸造制备9种不同成分的Mg-Nd-Gd-Zn-Zr系镁合金。研究该系列镁合金的铸造组织和室温力学性能,并通过对力学性能试验数据的分析,研究主要合金化稀土元素Gd和Nd的作用。研究发现:该系列镁合金铸态组织为α-Mg基... 采用正交试验方法,通过砂型铸造制备9种不同成分的Mg-Nd-Gd-Zn-Zr系镁合金。研究该系列镁合金的铸造组织和室温力学性能,并通过对力学性能试验数据的分析,研究主要合金化稀土元素Gd和Nd的作用。研究发现:该系列镁合金铸态组织为α-Mg基体和Mg12Nd化合物。经过固溶处理后,铸态组织中晶界上的化合物大部分溶入基体,但在晶界上还有一些颗粒状的化合物。Gd含量越高,合金的室温抗拉强度、屈服强度和延伸率就越高。Nd含量越高,抗拉强度和屈服强度也越好,但延伸率在Nd含量超过2水平(2.85%)后会降低。抗拉强度和屈服强度受Nd含量的影响最大,Gd含量的影响次之。Zn含量越高屈服强度越高,但抗拉强度和延伸率降低,其中延伸率受Zn含量的影响最大。 展开更多
关键词 组织:力学性能 正交试验:Mg-Nd-Gd-Zn-Zr系镁合金 固溶处理
下载PDF
Influence of I-phase and W-phase on microstructure and mechanical properties of Mg-8Li-3Zn alloy 被引量:4
2
作者 魏国兵 彭晓东 +3 位作者 张宝 Amir HADADZADEH 许天才 谢卫东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期713-720,共8页
Microstructures and mechanical properties of LZ83?xY alloys containingI-phase andW-phase were investigated by XRD, OM, SEM and EDS. The experimental results show that the content ofI-phase andW-phase changes by varyin... Microstructures and mechanical properties of LZ83?xY alloys containingI-phase andW-phase were investigated by XRD, OM, SEM and EDS. The experimental results show that the content ofI-phase andW-phase changes by varying Zn/Y mass ratio in the LZ83?xY alloys. The cohesion ofI-phase/α-Mg eutectic pockets can enhance the strength in the as-cast LZ83?0.5Y and LZ83?1.0Y alloys, while theW-phase has no obvious strengthening effect on the LZ83?1.5Y alloy. In the extruded alloys, the I-phase andW-phase were extruded into the particles with nanoscale size in theβ-Li matrix phase. The dispersion strengthening of W-phase was more obvious because of the higher volume fraction. The ultimate tensile strength of extruded LZ83?1.5Y alloy is up to 238 MPa while the elongation is up to 20%. 展开更多
关键词 Mg-8Li-3Zn alloy I-phase W-phase mechanical properties as-cast microstructure
下载PDF
Effects of calcium addition on as-cast microstructure and mechanical properties of Mg-5Zn-5Sn alloy 被引量:9
3
作者 杨明波 程亮 潘复生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期769-775,共7页
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to t... The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties. 展开更多
关键词 magnesium alloy Mg-5Zn-5Sn alloy microstructure and properties Ca addition
下载PDF
Effects of minor Sr, Sn and Sc addition on as-cast microstructure and mechanical properties of ZA84 magnesium alloy 被引量:2
4
作者 杨明波 朱翊 +1 位作者 潘复生 杨惠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期306-310,共5页
The effects of minor Sr, Sn and Sc addition on the as-cast microstructure and mechanical properties of the ZA84 magnesium alloy were compared. The results indicate that addition of 0.1%Sr, 0.5%Sn or 0.3%Sc (mass fract... The effects of minor Sr, Sn and Sc addition on the as-cast microstructure and mechanical properties of the ZA84 magnesium alloy were compared. The results indicate that addition of 0.1%Sr, 0.5%Sn or 0.3%Sc (mass fraction) to the ZA84 alloy can refine the grains of the alloy. Furthermore, addition of 0.1%Sr to the ZA84 alloy does not obviously change the morphology and distribution of Mg32(Al,Zn)49 phase. However, addition of 0.5%Sn or 0.3%Sc not only refines and modifies the Mg32(Al,Zn)49 phase but also suppresses the formation of Mg32(Al,Zn)49 phase, especially with the addition of 0.3%Sc. Furthermore, addition of 0.1%Sr, 0.5%Sn or 0.3%Sc to the ZA84 alloy improves the tensile properties at room temperature and 150℃, especially with the addition of 0.1%Sr and 0.3%Sc. However, addition of 0.1%Sr is not beneficial to the creep properties, and addition of 0.5%Sn has no obvious influence on the creep properties. Oppositely, addition of 0.3%Sc to the ZA84 alloy greatly improves the creep properties. 展开更多
关键词 magnesium alloy ZA84 magnesium alloy SR SN SC
下载PDF
Microstructure and mechanical properties of cast and heat treated Ti-6.55Al-3.41Mo-1.77Zr alloy
5
作者 Khaled M.IBRAHIM Abdel Moty M.EL-HAKEEM Ramadan N.ELSHAER 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3517-3524,共8页
α+βtitanium alloy with a composition of Ti-6.55Al-3.41Mo-1.77Zr (mass fraction,%) was cast into bars in a graphite mould using vacuum induction skull melting furnace (ISM). The cast bars were hot swaged at 700 ... α+βtitanium alloy with a composition of Ti-6.55Al-3.41Mo-1.77Zr (mass fraction,%) was cast into bars in a graphite mould using vacuum induction skull melting furnace (ISM). The cast bars were hot swaged at 700 °C and then heat treated by two different regimes which resulted in fine and coarse lamella structures, respectively. The grain size of the as-cast structure was estimated to be 660 μm and the swaged samples obtained a very fine grain size in the range of 50 μm. The overall best combination of hardness, tensile properties, and wear resistance of theα+βtitanium alloy was achieved by heat treating the samples at 1050 °C for getting fine lamellar structure. The maximum compression strength was reported for the heat treated samples at 800 °C with coarse lamella structure. The minimum wear rate was reported for the heat treated samples with fine lamellar structure and the maximum wear rate was obtained for as-cast samples due to its coarse and heterogeneity microstructure. 展开更多
关键词 α+βTi-alloy CASTING solution treatment microstructure mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部