在Gleeble-3500热模拟机上采用双道次热压缩试验,研究50Cr5MoV轧辊钢高温变形道次间隔时间内的静态软化行为,通过应力补偿法计算静态再结晶体积分数,分析热变形温度、应变速率、变形程度以及初始奥氏体晶粒尺寸对静态再结晶体积分数的影...在Gleeble-3500热模拟机上采用双道次热压缩试验,研究50Cr5MoV轧辊钢高温变形道次间隔时间内的静态软化行为,通过应力补偿法计算静态再结晶体积分数,分析热变形温度、应变速率、变形程度以及初始奥氏体晶粒尺寸对静态再结晶体积分数的影响,并建立50Cr5MoV轧辊钢的静态再结晶动力学模型,获得静态再结晶激活能191.85 k J/mol。结果表明:变形温度、应变速率、变形程度和道次间隔时间对静态再结晶体积分数影响较大,而初始奥氏体晶粒尺寸对静态再结晶体积分数影响很小;将静态再结晶动力学模型的预测值与实测值进行比较,二者吻合较好。展开更多
通过采用双道次热压缩的实验方法,在Gleeble-1500D热模拟机上对铸态30Cr2Ni4MoV钢在高温变形时的静态再结晶软化行为进行研究。根据实验结果,分析变形温度、初始晶粒尺寸以及道次间隔时间等不同工艺参数对铸态30Cr2Ni4MoV钢静态软化行...通过采用双道次热压缩的实验方法,在Gleeble-1500D热模拟机上对铸态30Cr2Ni4MoV钢在高温变形时的静态再结晶软化行为进行研究。根据实验结果,分析变形温度、初始晶粒尺寸以及道次间隔时间等不同工艺参数对铸态30Cr2Ni4MoV钢静态软化行为的影响;构建该铸态材料的静态再结晶动力学模型及晶粒尺寸模型,获得该铸态材料的再结晶激活能为207.39 k J·mol-1。通过实验结果可知:该铸态材料的静态再结晶体积分数随温度的升高、应变的增加、应变速率的加快和道次间隔时间的不断延长而增加,却几乎不受初始晶粒尺寸的影响。对比分析热压缩所得到的实验值与该模型的计算值,验证了所建模型的准确性。展开更多
文摘在Gleeble-3500热模拟机上采用双道次热压缩试验,研究50Cr5MoV轧辊钢高温变形道次间隔时间内的静态软化行为,通过应力补偿法计算静态再结晶体积分数,分析热变形温度、应变速率、变形程度以及初始奥氏体晶粒尺寸对静态再结晶体积分数的影响,并建立50Cr5MoV轧辊钢的静态再结晶动力学模型,获得静态再结晶激活能191.85 k J/mol。结果表明:变形温度、应变速率、变形程度和道次间隔时间对静态再结晶体积分数影响较大,而初始奥氏体晶粒尺寸对静态再结晶体积分数影响很小;将静态再结晶动力学模型的预测值与实测值进行比较,二者吻合较好。
文摘通过采用双道次热压缩的实验方法,在Gleeble-1500D热模拟机上对铸态30Cr2Ni4MoV钢在高温变形时的静态再结晶软化行为进行研究。根据实验结果,分析变形温度、初始晶粒尺寸以及道次间隔时间等不同工艺参数对铸态30Cr2Ni4MoV钢静态软化行为的影响;构建该铸态材料的静态再结晶动力学模型及晶粒尺寸模型,获得该铸态材料的再结晶激活能为207.39 k J·mol-1。通过实验结果可知:该铸态材料的静态再结晶体积分数随温度的升高、应变的增加、应变速率的加快和道次间隔时间的不断延长而增加,却几乎不受初始晶粒尺寸的影响。对比分析热压缩所得到的实验值与该模型的计算值,验证了所建模型的准确性。