Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different ...Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different conditions were also discussed.The results show that the optimum T4 and T6 heat treatment conditions for the as-cast Mg-4Y-2Nd-1Gd-0.4Zr alloy are 525°C,8 h and(525°C,8 h)+(225°C,16 h),respectively,with regard to the microstructure observation,DSC heating curve and mechanical properties.The hardness,yield strength,ultimate tensile strength and elongation of the Mg-4Y-2Nd-1Gd-0.4Zr alloy treated by optimum T6 heat treatment are HV91,180 MPa,297 MPa and 7.4%,respectively.Moreover,the Mg-4Y-2Nd-1Gd-0.4Zr alloys under different heat treatment conditions exhibit different tensile fracture modes.展开更多
The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is r...The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
A novel process that combines squeeze casting with partial remelting to obtain AZ61 magnesium alloy with semi-solid microstructures was proposed. In this route, the squeeze casting was used to predeform the magnesium ...A novel process that combines squeeze casting with partial remelting to obtain AZ61 magnesium alloy with semi-solid microstructures was proposed. In this route, the squeeze casting was used to predeform the magnesium alloy billets to obtain small dendritic structures. During subsequent partial remelting, small dendritic structures transform into globular grains surrounded by liquid films. The results show that the squeeze casting AZ61 alloy after partial remelting produces more ideal, finer semi-solid microstructure compared with as-cast AZ61 alloy treated by the same isothermal holding conditions. Moreover, the mechanical properties of the thixoformed AZ61 alloy prepared by squeeze casting plus partial remelting are better than those of the thixoformed alloy prepared by conventional casting plus partial remelting.展开更多
A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures...A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures.展开更多
The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33)...The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained.展开更多
A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment...A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.展开更多
Influence of the pouring temperature ranging from 680 to 780 ℃ on the solidification behavior, the microstructure and mechanical properties of the sand-cast Mg-10Gd-3Y-0.4Zr alloy was investigated. It was found that ...Influence of the pouring temperature ranging from 680 to 780 ℃ on the solidification behavior, the microstructure and mechanical properties of the sand-cast Mg-10Gd-3Y-0.4Zr alloy was investigated. It was found that the nucleation undercooling of the a-Mg phase increased from 2.3 to 6.3 ℃. The average a-Mg grain size increased from 44 to 71 μm, but then decreased to 46 μm. The morphology of the eutectic compound transformed from a continuous network into a discontinuous state and then subsequently into an island-like block. The volume fraction of β-Mg_24RE_5 phase increased and its morphology transformed from particle into rod-like. The increase in pouring temperature increased the solute concentration. YS increased from 138 to 151 MPa, and UTS increased from 186 to 197 MPa. The alloy poured at 750 ℃ had optimal combining strength and ductility. The fracture surface mode transformed from quasi-cleavage crack into transgranular fracture, all plus the dimple-like fracture, with the micro-porosity and the re-oxidation inclusion as major defects. The average a-Mg grain size played a main role in the YS of sand-cast Mg-10Gd-3Y-0.4Zr alloy, besides other factors, i.e. micro-porosity, morphology of eutectic compounds, re-oxidation inclusion and solute concentration.展开更多
A sophisticated stir casting route to fabricate large scale AA6061-31%B4C composite was developed. Key process parameters were studied, microstructure and mechanical properties of the composite were investigated. The ...A sophisticated stir casting route to fabricate large scale AA6061-31%B4C composite was developed. Key process parameters were studied, microstructure and mechanical properties of the composite were investigated. The results indicated that vacuum stirring/casting, B4C/Mg feeding and ingots cooling were essential to the successful fabrication of AA6061-31%B4C composite. Chemical erosion examination verified the designed B4 C content; X-ray fluorescence spectrometer(XFS) showed the chemical composition of Mg and Si in the matrix conformed to industry standards; scanning electronic microscope(SEM) and X-ray diffraction(XRD) revealed that B4 C particles were evenly distributed in the composites with well dispersed Mg2Si precipitates. Tensile testing results showed that the AA6061-31%B4C composite had a tensile strength of 340 MPa, improved by 112.5% compared with AA1100-31%B4C composite, which is attributed to the enhanced strength of the matrix alloy.展开更多
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves...The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.展开更多
The aluminum joints were prepared by overcasting liquid aluminum A356 onto 6101 aluminum extrusion bars. The microstructure, element distribution, hardness and tensile strength of the joint interface area were investi...The aluminum joints were prepared by overcasting liquid aluminum A356 onto 6101 aluminum extrusion bars. The microstructure, element distribution, hardness and tensile strength of the joint interface area were investigated, the mechanism of interface formation and fracture behavior were analyzed. The results show that good metallurgical bonding was formed in the joints by electro-plating the solid 6101 aluminum alloy with a layer of zinc coating and carefully controlling the overcasting process. There is a transition zone between the two bonded aluminum alloys, and the fine equiaxed grained structure in the transition zone is due to the high undercooling during solidification. The tensile strength of the joint interface is higher than that of the as-cast A356 aluminum alloy(about 145 MPa) and the final fracture is always located in the as-cast A356 material.展开更多
To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the ef...To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the effect of Nb addition on the microstructure,mechanical properties and castability of Ti-15 Mo alloy.Phase analysis and microstructure observation show that all the alloys consist of single β phase and the equiaxed β grain is refined with increasing Nb content.These β-type Ti-15Mo-xNb alloys exhibit good plasticity and rather low compression elastic modulus(in the range of 18.388-19.365 GPa).After Nb addition,the compression yield strength of the alloys increases.With increasing Nb content,the micro-hardness of the alloys decreases.The alloys exhibit obvious fibrous strip microstructure after cold compression deformation.The castability test shows that the castability of the alloys after Nb addition decreases and that of the Ti-15 Mo alloy is the highest(92.01%).展开更多
In order to improve the properties of ZA 27 and ZA4-3 zinc alloys and broaden their application ranges,SiC particlj1Ale composites, prepared by means of rheological casting technology, are investigated individually on...In order to improve the properties of ZA 27 and ZA4-3 zinc alloys and broaden their application ranges,SiC particlj1Ale composites, prepared by means of rheological casting technology, are investigated individually on their rT..t'llanical properties. The results of ne-cural strength, impact strensttl, compressive strength, hardness values and wear rate of the composites show that the addition of SiCp, leads to the increase of the compressive strength and hardness values at both room and higher temperature, and wear resistance of the materials, accompanying with the slight decrease of the fie-cural strength and sharp reduction of the impacttoughness. The factors affecting the mechanical properties of the composites are discussed in the paper.展开更多
基金Project(0502)supported by the Aerospace Science and Technology Innovation Fund of China Aerospace Science and Technology CorporationProject(2007CB613701)supported by the National Basic Research Program of ChinaProject(2009AA033501)supported by the National High-tech Research and Development Program of China
文摘Influence of heat treatment on the microstructures and mechanical properties of sand-cast Mg-4Y-2Nd-1Gd-0.4Zr magnesium alloy was investigated,and the tensile fracture mechanisms of the studied alloys under different conditions were also discussed.The results show that the optimum T4 and T6 heat treatment conditions for the as-cast Mg-4Y-2Nd-1Gd-0.4Zr alloy are 525°C,8 h and(525°C,8 h)+(225°C,16 h),respectively,with regard to the microstructure observation,DSC heating curve and mechanical properties.The hardness,yield strength,ultimate tensile strength and elongation of the Mg-4Y-2Nd-1Gd-0.4Zr alloy treated by optimum T6 heat treatment are HV91,180 MPa,297 MPa and 7.4%,respectively.Moreover,the Mg-4Y-2Nd-1Gd-0.4Zr alloys under different heat treatment conditions exhibit different tensile fracture modes.
基金Project(2007CB613704)supported by the National Basic Research Program of China
文摘The microstructure and mechanical properties of Mg-10.1Gd-3.74Y-0.25Zr (mass fraction, %) alloy (GW104 alloy) cast by metal mould casting (MMC) and lost foam casting (LFC) were evaluated, respectively. It is revealed that different forming modes do not influence the phase composition of as-cast alloy. In the as-cast specimens, the microstructures are similar and composed of α-Mg solid solution, eutectic compound of α-Mg+Mg 24 (Gd, Y) 5 and cuboid-shaped Mg 5 (Gd, Y) phase; whereas the average grain size of the alloy produced by metal mould casting is smaller than that by lost foam casting. The eutectic compound of the alloy is completely dissolved after solution treatment at 525 ℃for 6 h, while the Mg 5 (Gd, Y) phase still exists after solution treatment. After peak-ageing, the lost foam cast alloy exhibits the maximum ultimate tensile strength of 285 MPa, and metal mould cast specimen 325 MPa at room temperature, while the tensile yield strengths of them are comparable. It can be concluded that GW104 alloy cast by lost foam casting possesses similar microstructure and evidently lower mechanical strength compared with metal mould cast alloy, due to slow solidification rate and proneness to form shrinkage porosities during lost foam casting process.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金Project(51405466)supported by the National Natural Science Foundation of ChinaProject(Y32Z010F10)supported by the Western Light Program of the Chinese Academy of Sciences+1 种基金Project(cstc2014jcyj A50009)supported by Chongqing Research of Application Foundation and Advanced Technology,ChinaProject(cstc2014jcyj A50037)supported by Chongqing Research of Application Foundation and Advanced Technology,China
文摘A novel process that combines squeeze casting with partial remelting to obtain AZ61 magnesium alloy with semi-solid microstructures was proposed. In this route, the squeeze casting was used to predeform the magnesium alloy billets to obtain small dendritic structures. During subsequent partial remelting, small dendritic structures transform into globular grains surrounded by liquid films. The results show that the squeeze casting AZ61 alloy after partial remelting produces more ideal, finer semi-solid microstructure compared with as-cast AZ61 alloy treated by the same isothermal holding conditions. Moreover, the mechanical properties of the thixoformed AZ61 alloy prepared by squeeze casting plus partial remelting are better than those of the thixoformed alloy prepared by conventional casting plus partial remelting.
基金Project (50975093) supported by the National Natural Science Foundation of ChinaProject (2012ZP0006) supported by the Fundamental Research Funds for the Central Universities,China
文摘A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2011DFA50520) supported by International Science Technology Cooperation Program of China
文摘The squeeze cast process parameters of AZ80 magnesium alloy were optimized by morphological matrix. Experiments were conducted by varying squeeze pressure, die pre-heat temperature and pressure duration using L9(33) orthogonal array of Taguchi method. In Taguchi method, a 3-level orthogonal array was used to determine the signal/noise ratio. Analysis of variance was used to determine the most significant process parameters affecting the mechanical properties. Mechanical properties such as ultimate tensile strength, elongation and hardness of the components were ascertained using multi variable linear regression analysis. Optimal squeeze cast process parameters were obtained.
基金Project(2011006B)supported by the Open Project of National Engineering Research Center of Near-Shape Forming for Metallic Materials,ChinaProject(FJ)supported by the CAS"100 talents"Plan
文摘A numerical model of foundry filling process was established based on the smoothed particle hydrodynamics(SPH)method.To mimic the constraints that the solid mold prescribes on the filling fluid,a composite treatment to the solid boundaries is elaborately designed.On solid boundary surfaces,boundary particles were set,which exert Lennard-Jones force on approaching fluid particles;inside the solid mold,ghost particles were arranged to complete the compact domain of near-boundary fluid particles.Water analog experiments were conducted in parallel with the model simulations.Very good agreement between experimental and simulation results demonstrates the success of model development.
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProject(USCAST2012-15)supported by the Funded Project of SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(20130073110052)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘Influence of the pouring temperature ranging from 680 to 780 ℃ on the solidification behavior, the microstructure and mechanical properties of the sand-cast Mg-10Gd-3Y-0.4Zr alloy was investigated. It was found that the nucleation undercooling of the a-Mg phase increased from 2.3 to 6.3 ℃. The average a-Mg grain size increased from 44 to 71 μm, but then decreased to 46 μm. The morphology of the eutectic compound transformed from a continuous network into a discontinuous state and then subsequently into an island-like block. The volume fraction of β-Mg_24RE_5 phase increased and its morphology transformed from particle into rod-like. The increase in pouring temperature increased the solute concentration. YS increased from 138 to 151 MPa, and UTS increased from 186 to 197 MPa. The alloy poured at 750 ℃ had optimal combining strength and ductility. The fracture surface mode transformed from quasi-cleavage crack into transgranular fracture, all plus the dimple-like fracture, with the micro-porosity and the re-oxidation inclusion as major defects. The average a-Mg grain size played a main role in the YS of sand-cast Mg-10Gd-3Y-0.4Zr alloy, besides other factors, i.e. micro-porosity, morphology of eutectic compounds, re-oxidation inclusion and solute concentration.
基金founded by Joint Laboratory of Nuclear Materials and Service Safety (2013966003),China
文摘A sophisticated stir casting route to fabricate large scale AA6061-31%B4C composite was developed. Key process parameters were studied, microstructure and mechanical properties of the composite were investigated. The results indicated that vacuum stirring/casting, B4C/Mg feeding and ingots cooling were essential to the successful fabrication of AA6061-31%B4C composite. Chemical erosion examination verified the designed B4 C content; X-ray fluorescence spectrometer(XFS) showed the chemical composition of Mg and Si in the matrix conformed to industry standards; scanning electronic microscope(SEM) and X-ray diffraction(XRD) revealed that B4 C particles were evenly distributed in the composites with well dispersed Mg2Si precipitates. Tensile testing results showed that the AA6061-31%B4C composite had a tensile strength of 340 MPa, improved by 112.5% compared with AA1100-31%B4C composite, which is attributed to the enhanced strength of the matrix alloy.
基金Projects(5120414751274175)supported by the National Natural Science Foundation of China+3 种基金Projects(2011DFA505202014DFA50320)supported by the International Cooperation Program from the Ministry of Science and Technology of ChinaProject(20123088)supported by the Foundation for Graduate Students of Shanxi ProvinceChina
文摘The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening.
基金Project supported by the General Motors Company in Pontiac,USA
文摘The aluminum joints were prepared by overcasting liquid aluminum A356 onto 6101 aluminum extrusion bars. The microstructure, element distribution, hardness and tensile strength of the joint interface area were investigated, the mechanism of interface formation and fracture behavior were analyzed. The results show that good metallurgical bonding was formed in the joints by electro-plating the solid 6101 aluminum alloy with a layer of zinc coating and carefully controlling the overcasting process. There is a transition zone between the two bonded aluminum alloys, and the fine equiaxed grained structure in the transition zone is due to the high undercooling during solidification. The tensile strength of the joint interface is higher than that of the as-cast A356 aluminum alloy(about 145 MPa) and the final fracture is always located in the as-cast A356 material.
基金Project(QN2010-04)supported by the Youth Startup Fund of the Second Affiliated Hospital of Harbin Medical University,ChinaProject(2010-156)supported by the Medical Scientific Research Foundation of Heilongjiang Province Health Department,ChinaProject(HIT.NSRIF.2012002)supported by the Fundamental Research Funds for the Central Universities,China
文摘To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the effect of Nb addition on the microstructure,mechanical properties and castability of Ti-15 Mo alloy.Phase analysis and microstructure observation show that all the alloys consist of single β phase and the equiaxed β grain is refined with increasing Nb content.These β-type Ti-15Mo-xNb alloys exhibit good plasticity and rather low compression elastic modulus(in the range of 18.388-19.365 GPa).After Nb addition,the compression yield strength of the alloys increases.With increasing Nb content,the micro-hardness of the alloys decreases.The alloys exhibit obvious fibrous strip microstructure after cold compression deformation.The castability test shows that the castability of the alloys after Nb addition decreases and that of the Ti-15 Mo alloy is the highest(92.01%).
文摘In order to improve the properties of ZA 27 and ZA4-3 zinc alloys and broaden their application ranges,SiC particlj1Ale composites, prepared by means of rheological casting technology, are investigated individually on their rT..t'llanical properties. The results of ne-cural strength, impact strensttl, compressive strength, hardness values and wear rate of the composites show that the addition of SiCp, leads to the increase of the compressive strength and hardness values at both room and higher temperature, and wear resistance of the materials, accompanying with the slight decrease of the fie-cural strength and sharp reduction of the impacttoughness. The factors affecting the mechanical properties of the composites are discussed in the paper.